
UNIX Developer’s Interface Guide for Intel-Based Servers

i UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

UNIX* Developer’s
Interface Guide
for Intel -Based Servers
(UDIG)

Version 1.0
December 1999

UDIG Promoters
Adaptec

Compaq

Hewlett Packard

IBM

Intel

Interphase Corporation

LSI Logic

Mylex

Phoenix

Qlogic

SCO

Sun Microsystems

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP ii
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Notice: Implementations developed using the information provided in this specification may infringe the patent rights of
various parties including the parties involved in the development of this specification. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights (including without limitation rights under any party's patents) are
granted herein, except that a copyright license is hereby granted to copy and reproduce this specification for internal use
only. All reproductions of this specification must include this disclaimer in its entirety.

UDIG Working Group: Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the “Promoters”).

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. The Promoters disclaim all liability,
including without limitation claims, costs, damages, and expenses arising out of, directly or indirectly, any claim of product
liability, personal injury or death, and liability for infringement of any proprietary rights, relating to any use of information in
this specification.

THIS SPECIFICATION IS NOT INTENDED TO DIRECT OR INSTRUCT ANY PARTY IN THE > DEVELOPMENT OF ANY
IMPLEMENTATION WHERE FAILURE OF THE IMPLEMENTATION COULD CAUSE PERSONAL INJURY OR DEATH.

IN NO EVENT WILL THE PROMOTERS BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF USE, DIRECT,
INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES, IRRESPECTIVE OF WHETHER THE PROMOTERS HAVE
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

*Other product and corporate names may be trademarks of other companies and are used only for explanation and to the
owners’ benefit, without intent to infringe.

UNIX* is a registered trademark of The Open Group.

Copyright © 1999; UNIX* Developer’s Guide Working Group and Intel Corporation. All rights reserved.

UNIX Developer’s Interface Guide for Intel-Based Servers

iii UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Contents

CHAPTER 1: INTRODUCTION .. 1-1

1.1 Audience for This Guide ..1-1

1.2 Scope of This Guide ..1-1

1.3 Purpose of This Guide ..1-1

1.4 Chapters of This Guide ..1-2

1.5 Guideline Compliance ..1-2
1.5.1 What Is Required Compliance? ...1-2
1.5.2 What Is Recommended Compliance? ..1-3
1.5.3 What Is Optional Compliance? ..1-3

1.6 Tools...1-3

1.7 Guideline Summary..1-3

CHAPTER 2: BOOT AND CONFIGURATION GUIDELINES........................... 2-1

2.1 EFI Boot Model...2-2
2.1.1 EFI Overview...2-2

2.1.1.1 System Partition ..2-2
2.1.1.2 Boot Time Services ...2-2
2.1.1.3 Runtime Services...2-2

2.1.2 UNIX and EFI..2-3
2.1.2.1 Support EFI Boot Environment by Providing an EFI OS Loader2-3
2.1.2.2 Tools for Installing Initial OS Boot Loader ..2-3

2.1.2.2.1 Tools for creating an EFI partition...2-3
2.1.2.2.2 Tools for setting non-volatile variables ...2-3

2.1.2.3 Provide Tools to Access and Maintain the System Partition at OS Runtime2-3
2.1.2.3.1 Provide tools to copy EFI applications, boot loaders, and drivers2-3
2.1.2.3.2 Provide tools to verify the integrity of the system partition and its contents2-3
2.1.2.3.3 Provide tools to create an EFI partition. ..2-3

2.1.2.4 Manipulating EFI Non-volatile Variables ...2-4
2.1.2.4.1 Manipulating EFI non-volatile variables with administrative tools...........................2-4
2.1.2.4.2 Path to operating system boot partition..2-4

2.2 Option ROMs..2-4
2.2.1 IA-32 Option ROMs ..2-4
2.2.2 EFI Option ROMs..2-5
2.2.3 EFI Portable Option ROMs..2-5

2.3 UNIX ACPI Usage Model ..2-5

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP iv
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2.3.1 Hardware/Firmware Requirements ..2-5
2.3.1.1 Follow DIG-64 Hardware/Firmware Guidelines for ACPI ...2-5

2.3.2 UNIX Operating System Requirements ...2-6
2.3.2.1 Support for Memory Reporting Interfaces ..2-6
2.3.2.2 Support for ACPI Devices Defined in the ACPI Specification2-6
2.3.2.3 Provide an ACPI AML Interpreter ..2-6
2.3.2.4 Provide Configuration Support ...2-6
2.3.2.5 Provide Support for System Events via SCI and GPE ..2-6
2.3.2.6 Recognize Devices through the ACPI Namespace..2-6

2.3.2.6.1 Devices that require ACPI enumeration ..2-7
2.3.2.7 Use Resources Presented in the Namespace..2-7
2.3.2.8 Respond to Device Insertion and Removal ...2-7
2.3.2.9 Provide Device Power Management Support for D0 and D3..2-7

2.3.3 PCI Hot-plug..2-7
2.3.4 ACPI Subsystem ..2-7

2.3.4.1 Implement an ACPI Subsystem...2-8
2.3.4.2 Implement ACPI subsystem External Interfaces...2-8
2.3.4.3 Implement ACPI Subsystem Operating System Services ...2-8

CHAPTER 3: DEVICE DRIVERS AND SERVICES.. 3-1

3.1 Source Specifications ..3-2
3.1.1 UDI Specifications [UDI1] ..3-2

3.2 Binary Specifications ..3-2
3.2.1 IA-32 ABI Binding ..3-3

3.2.1.1 Processor Architecture ..3-3
3.2.1.1.1 Supported processor types ...3-3
3.2.1.1.2 Endianness ...3-3
3.2.1.1.3 Driver packaging subdirectories ..3-3

3.2.1.2 Runtime Architecture ..3-4
3.2.1.3 Binary Bindings to the Source Specifications ...3-4

3.2.1.3.1 Sizes of UDI-Specific data types ...3-4
3.2.1.3.2 Implementation-Dependent macros ...3-5
3.2.1.3.3 UDI functions implemented as macros..3-6

3.2.1.4 Building the Driver Object ..3-6
3.2.1.4.1 Object file format...3-6
3.2.1.4.2 Static driver properties encapsulation ..3-6

3.2.2 IA-64 ABI Binding ..3-7
3.2.2.1 Processor Architecture ..3-7

3.2.2.1.1 Supported processor types ...3-7
3.2.2.1.2 Endianness ...3-7
3.2.2.1.3 Driver packaging subdirectories ..3-7

3.2.2.2 Runtime Architecture ..3-8
3.2.2.3 Binary Bindings to the Source Specifications ...3-8

3.2.2.3.1 Sizes of UDI-Specific data types ...3-8
3.2.2.3.2 Implementation-Dependent macros ...3-8
3.2.2.3.3 UDI functions implemented as macros..3-9

3.2.2.4 Building the Driver Object ..3-9
3.2.2.4.1 Object file format...3-9
3.2.2.4.2 Static driver properties encapsulation ..3-10

3.3 Technology Profiles ..3-10

UNIX Developer’s Interface Guide for Intel-Based Servers

v UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3.3.1 Driver Services...3-11
3.3.1.1 UDI Core Specification ...3-11
3.3.1.2 UDI Physical I/O Specification ...3-11

3.3.2 Metalanguages ...3-11
3.3.3 Bus Bindings..3-12

3.4 UDI Environment Implementer’s Guide ..3-12

3.5 Reference Implementation ...3-12

3.6 Driver Development Kits..3-13

APPENDIX A: ACPI COMPONENT ARCHITECTURE: ACPI SUBSYSTEM 1

Introduction A-2

Using the ACPI Subsystem A-13

OS-Independent Component - External Interface Definition A-30

OS-Dependent Component - External Interface Definition A-70

User Guide A-88

REFERENCES..R-1

GLOSSARY... G-1

INDEX .. I-1

TABLES
Table 1-1 – Contents ..1-2

Table 3-1 – <abi> subdirectories ..3-4

Table 3-2– UDI specific data types...3-5

Table 3-3 – <abi> directories for various processors ...3-7

Table 3-4 – Data types for the IA-64 ABI binding ...3-8

Table 3-5 – Metalanguages ..3-11

Table 3-6 – UDI Bus Binding Specification...3-12

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP vi
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

1-1

Chapter 1: Introduction
This chapter introduces the audience, scope, and purpose of the UNIX* Developer’s Interface
Guide for Intel-Based Servers (UDIG). This chapter also summarizes the content of the rest of the
document.

REFERENCES
UDIG uses acronyms to reference other documents. For example, the acronym ACPI1
refers to the Advanced Configuration and Power Interface (ACPI) Revision 1.0b.
Acronyms are unique and enclosed in square brackets [ACPI1]. For detailed information
about the document referenced by an acronym, see the References section.

1.1 Audience for This Guide

This guide is for use by operating system, peripheral device, and platform vendors. It assumes
that readers are familiar with referenced technologies.

1.2 Scope of This Guide

This guide describes common system building blocks and interfaces that can be used across all
UNIX operating systems on Intel architecture server platforms. The guide focuses on software
interfaces for hardware systems and includes implementation requirements, guidelines, and usage
models.

When a system adheres to all required guidelines, the system is referred to as a UDIG-compliant
system.

This guide provides guidelines beyond the Developers Interface Guide for IA-64 servers [DIG64]
to support UNIX operating systems. Exceptions are noted when the guide refers to IA-32
architectures.

1.3 Purpose of This Guide

The purpose of this guide is to provide a set of common compatible interfaces for the UNIX
operating system on Intel architectures.

This guide attempts to

• Reduce design and development costs for Operating System Vendors (OSVs) and
device manufacturers.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 1-2
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• Broaden opportunities for companies producing products for servers running UNIX
operating systems.

• Reduce qualification time and effort for IT customers.

1.4 Chapters of This Guide

Chapter 1 provides overview information. Chapters 2 through Appendix A address guidelines for
specific architectural areas for UNIX operating systems running on Intel servers.

Table 1-1 – Contents

CHAPTER CONTENT

Chapter 1: Introduction This chapter introduces the audience, scope, and
purpose of the guide. It summarizes the content of other
chapters.

Chapter 2: Boot and Configuration
Guidelines

This chapter describes the guidelines for booting and
configuring the UNIX operating system.

Chapter 3: Device Drivers and Services This chapter addresses guidelines for device drivers and
services for the UNIX operating system.

Appendix A Information about the ACPI Component Architecture
(CA) and the interfaces for both the OS-independent and
OS-dependent components.

References This section lists documents that are referenced in the
UDIG.

1.5 Guideline Compliance

Compliance is self-administered. It is up to each adopter of this guide to check for compliance.

Adherence to these guidelines contributes to server software availability, scalability,
compatibility, and manageability. It is in the implementer’s best interest to clearly identify that
software/hardware interfaces are compliant, and to announce this compliance through product
literature and labeling.

When a system adheres to all required guidelines, the system is referred to as a UDIG-compliant
system.

The sections below describe levels of guideline compliance.

1.5.1 What Is Required Compliance?
If a feature is required, the feature must be implemented to comply with these guidelines. Other
architectural layers assume the presence of a required feature.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

1-3

NOTE
Some required features may be nested under parent features marked as recommended or
optional. In this situation, the nested required feature must be implemented for compliance
only if implementers include the recommended or optional parent feature.

1.5.2 What Is Recommended Compliance?
If a feature is recommended, the feature need not be implemented. Implementation is, however,
encouraged.

The presence of a recommended feature is not to be assumed nor precluded by other architectural
levels.

An implementation which does not include a recommended feature must be prepared to
interoperate with another implementation which does include the feature, though perhaps with
reduced functionality. Similarly, an implementation which does include a recommended feature
must be prepared to interoperate with another implementation which does not include the feature
(except, of course, for the functionality the feature provides.)

Recommended features may become requirements in the future.

1.5.3 What Is Optional Compliance?
If a feature is optional, the feature need not be implemented. There should be no dependencies on
optional features by other architectural levels. Omitting an optional feature should have no
impact on other required features or the proper functioning of the system.

Operating systems are not required to support optional features but must operate in the presence
or absence of those features.

1.6 Tools

This guide references tools that help you adopt these guidelines. These elements are referenced in
the individual chapters and include SDKs and reference implementations where available.

1.7 Guideline Summary

The following table is a summary of all the guidelines in this document.

Section Guideline Required, Recommended,
Optional

2.1.2.1 Support EFI Boot Environment by Providing an EFI OS
Loader

Required

2.1.2.2 Tools for Installing Initial OS Boot Loader Required

2.1.2.2.1 Tools for creating an EFI partition Required

2.1.2.2.2 Tools for setting non-volatile variables Required

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 1-4
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Section Guideline Required, Recommended,
Optional

2.1.2.3 Provide Tools to Access and Maintain the System
Partition at OS Run-time

Recommended

2.1.2.3.1 Provide tools to copy EFI applications, boot loaders, and
drivers

Required if Provide Tools to
access and maintain the system
partition at OS run-time is
implemented

2.1.2.3.2 Provide tools to verify the integrity of the system
partition and its contents

Recommended

2.1.2.3.3 Provide tools to create an EFI partition Recommended

2.1.2.4 Manipulating EFI Non-volatile Variables Required

2.1.2.4.1 Manipulating EFI non-volatile variables with
administrative tools

Recommended

2.1.2.4.2 Path to operating system boot partition Recommended

2.2.1 IA-32 Option ROMs Optional

2.2.2 EFI Option ROMs Recommended

2.2.3 EFI Portable Option ROMs Optional

2.3.1.1 Follow DIG-64 Hardware/Firmware Guidelines for ACPI Required

2.3.2.1 Support for Memory Reporting Interfaces Required

2.3.2.2 Support for ACPI Devices Defined in the ACPI
Specification

Recommended

2.3.2.3 Provide an ACPI AML Interpreter Required

2.3.2.4 Provide Configuration Support Required

2.3.2.5 Provide Support for System Events via SCI and GPE Recommended

2.3.2.6 Recognize Devices through the ACPI Namespace Required

2.3.2.6.1 Devices that require ACPI enumeration Required

2.3.2.7 Use Resources Presented in the Namespace Required

2.3.2.8 Respond to Device Insertion and Removal Recommended

2.3.2.9 Provide Device Power Management Support for D0 and
D3

Recommended

2.3.3 PCI Hot-plug Recommended

2.3.4.1 Implement an ACPI Subsystem Required

2.3.4.2 Implement ACPI subsystem External Interfaces Recommended

2.3.4.3 Implement ACPI Subsystem Operating System Services Recommended

3.2.1.1.1 Supported processor types Required

3.2.1.1.2 Endianness Required

3.2.1.1.3 Driver packaging subdirectories Required

3.2.1.2 Runtime Architecture Required

3.2.1.3.1 Sizes of UDI-Specific data types Required

3.2.1.3.2 Implementation-Dependent macros Required

3.2.1.3.3 UDI functions implemented as macros Required

3.2.1.4.1 Object file format Required

3.2.1.4.2 Static driver properties encapsulation Required

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

1-5

Section Guideline Required, Recommended,
Optional

3.2.2.1.1 Supported processor types Required

3.2.2.1.2 Endianness Required (Recommended that
little endian is supported)

3.2.2.1.3 Driver packaging subdirectories Required

3.2.2.2 Runtime Architecture Required

3.2.2.3.1 Sizes of UDI-Specific data types Required

3.2.2.3.2 Implementation-Dependent macros Required

3.2.2.3.3 UDI functions implemented as macros Required

3.2.2.4.1 Object file format Required

3.2.2.4.2 Static driver properties encapsulation Required

3.3.1.1 UDI Core Specification Required

3.3.1.2 UDI Physical I/O Specification Required

3.3.2 Metalanguages Required

3.3.3 Bus Bindings Required

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2-1

Chapter 2: Boot and Configuration
Guidelines
This chapter provides the guidelines necessary to configure and boot a UNIX operating system.
The content assists UNIX operating system developers, firmware developers, and system
hardware developers in building fully functional server systems based on IA-32, IA-64, and
compatible architectures. This draws from a very large existing body of firmware/boot
documentation to define firmware and hardware interfaces. These interfaces are required to take a
system from the end of POST to the end of the operating system boot process.

Booting a system requires powering up the system, configuring the hardware for boot, and
executing an OS bootstrap loader. There are two distinctly different methods for booting a
system: legacy IA-32 boot and Extensible Firmware Interface (EFI). Both methods are OS
neutral, so very little documentation regarding the booting of a UNIX operating system is needed.

The PC industry has been using the legacy IA-32 method for years. The legacy IA-32 method
uses the system BIOS to control the boot sequence. The system BIOS provides abstracted
services, enumerates hardware devices, loads Option ROMs, and performs resource management.
This chapter assumes that the reader is familiar with the legacy boot process.

EFI is a comprehensive interface specification for booting an operating system. Since the EFI
Specification [EFI1] is OS neutral, it does not provide guidelines for booting a UNIX operating
system. This chapter assumes that the reader is familiar with the specification and adds guidelines
for UNIX operating systems in an EFI environment. EFI allows systems to remove legacy
hardware and associated legacy firmware interfaces.

The ACPI Specification provides a methodology for configuring systems. By using ACPI the
operating system does not have to rely on proprietary methods for configuring the system
hardware. ACPI interfaces provide a configuration layer that allows the operating system and
hardware to exist and evolve independently of each other.

This chapter includes

• EFI boot model requirements and how industry uses these requirements to boot IA-64
systems.

• Requirements for EFI Option ROMs.
• ACPI requirements for UNIX in an IA-64 environment.

REFERENCES
The UDIG uses acronyms to reference other documents. For example, the acronym ACPI1
refers to the Advanced Configuration and Power Interface (ACPI) Revision 1.0b.
Acronyms are unique and enclosed in square brackets [ACPI1]. For detailed information
about the document referenced by an acronym, see the References section.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 2-2
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2.1 EFI Boot Model

This section describes the Extensible Firmware Interface (EFI) boot initiative and its interaction
with UDIG-compliant UNIX operating systems.

2.1.1 EFI Overview
Currently, some OS loaders have a very intimate knowledge of the underlying hardware platform.
Relying on specific types of hardware devices at dedicated I/O or memory addresses prevents
innovation and evolution of the platform.

EFI technology is OS-independent and applies equally to both IA-64 and IA-32 platforms. EFI
isolates the OS loader from the underlying hardware platform by specifying interfaces for both
the OS loader and Platform hardware/firmware. EFI defines a system partition, boot-time
services, run-time services, and an application environment where OS-independent applications
can execute.

2.1.1.1 System Partition

EFI specifies an OS-independent area, called the system partition, for the storage of utilities,
diagnostics, EFI drivers and OS loaders.

EFI supports booting from media that contains an EFI OS Loader or an EFI-defined system
partition. Examples of media supported by EFI include diskette, hard drive, CD-ROM, DVD-
ROM, and networks.

2.1.1.2 Boot Time Services

EFI defines boot-time services. For example, it provides:

• Memory allocation.
• Watchdog timer support.
• Console input/output.
• Block I/O, Disk I/O and file system access to devices.
• Ability to add additional EFI interfaces and drivers.
• Functions that create, signal, and destroy events and adjust a task’s priority level.
• Functions that terminate the EFI application or transition from the boot environment to

the OS runtime environment.

2.1.1.3 Runtime Services

EFI defines runtime services that are available even after the OS boot loader has issued the EFI
disconnect command. The following are examples of EFI runtime services.

• Get and set time.
• Reboot the system.
• Get or set a system wakeup time.
• Get or set non-volatile environment variables.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2-3

2.1.2 UNIX and EFI

2.1.2.1 Support EFI Boot Environment by Providing an EFI OS Loader

Required

An EFI OS loader must be the software component that bootstraps the operating system using
EFI services.

2.1.2.2 Tools for Installing Initial OS Boot Loader

Required

The operating system install process must be capable of storing the OS boot loader in an EFI
partition.

2.1.2.2.1 Tools for creating an EFI partition

Required

The operating system install process must be capable of creating an EFI partition.

2.1.2.2.2 Tools for setting non-volatile variables

Required

The operating system install process must be capable of setting the environment variables
required for boot.

2.1.2.3 Provide Tools to Access and Maintain the System Partition at
OS Runtime

Recommended

2.1.2.3.1 Provide tools to copy EFI applications, boot loaders, and drivers

Required if Provide tools to access and maintain the system partition at OS run-time section is implemented

The EFI system partition is used to store EFI applications such as OS Boot loaders, drivers and
other applications. The operating system must provide tools to copy EFI applications, boot
loaders and drivers to the system partition.

2.1.2.3.2 Provide tools to verify the integrity of the system partition and its contents

Recommended

The operating system should provide tools to verify the integrity of the system partition and its
contents. These tools should verify that all software components in the system partition exist to
enable the system to boot.

2.1.2.3.3 Provide tools to create an EFI partition.

Recommended

The operating system should provide tools to create additional EFI partitions.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 2-4
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2.1.2.4 Manipulating EFI Non-volatile Variables

Required

The operating system must be capable of manipulating the EFI non-volatile variables at run-time.
For example, this interface could be used to manipulate the boot order.

2.1.2.4.1 Manipulating EFI non-volatile variables with administrative tools

Recommended

The operating system should provide administrative tools to manipulate the EFI non-volatile
variables at run-time.

2.1.2.4.2 Path to operating system boot partition

Recommended

The path to operating system boot partition should be specified. This data resides in the
OptionalData element of the Boot load option variable (Boot####,) as defined in the EFI
Specification [EFI1].

If implemented, the first item in the OptionalData element must be an EFI_DEVICE_PATH,
including Hard Drive Media Device Path that represents the path to the OS partition. The OS
loader will use this element as its primary means to locate and perform I/O to the OS partition
using EFI. Future revisions of the EFI specification may redefine OptionalData as an element of
type EFI_DEVICE_PATH.

2.2 Option ROMs

This section provides the implementation guidelines to assist in Option ROM development for
IA-64 and compatible architectures. While the focus is on IA-64-hosted UNIX servers, this
section defines guidelines that are independent of CPU architecture and operating systems for the
future development of Option ROMs. Where applicable, this section refers to existing industry
specifications and is intended for developers who implement EFI Option ROMs.

This section provides guidelines regarding:

• IA-32 Option ROMs.
• EFI Option ROMs.
• EFI Portable Option ROMs.

2.2.1 IA-32 Option ROMs
Optional

IA-32 Option ROMs have many legacy requirements that may not be supported in future EFI
systems. A complete description of existing IA-32 Option ROM technology will be included in
future documentation sponsored by Intel.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2-5

2.2.2 EFI Option ROMs
Recommended

EFI defines a mechanism for EFI drivers to reside in an Option ROM. The [EFI1] specification
includes processor architecture-dependent drivers for both IA-32 and IA-64.

2.2.3 EFI Portable Option ROMs
Optional

One of the goals of a future EFI Specification is to provide a comprehensive and common
Portable Option ROM implementation. Specific key goals include:

• Abstract and extensible design.
• CPU independence.
• OS independence.
• Allow multiple formats in a single Option ROM.
• Facilitate the removal of legacy infrastructure.

A portable Option ROM uses the EFI Option ROM format and includes a portable EFI boot
service driver or application. Portable Option ROMs are operating system independent and
achieve CPU architecture independence through the following means.

• Exclusive use of EFI Services.
• Portable byte stream format.

2.3 UNIX ACPI Usage Model

The Advanced Configuration and Power Interface (ACPI) specification provides a methodology
for configuring systems.

By using ACPI the operating system does not have to rely on proprietary methods for configuring
the system hardware. ACPI interfaces provide a configuration layer that allows the operating
system and hardware to exist and evolve independently of each other. ACPI replaces legacy
platform interfaces, such as PnP BIOS calls and the Multi-Processor Specification, and provides a
means for an orderly transition away from these legacy interfaces. ACPI provides a flexible and
extensible method to support advanced architectures.

2.3.1 Hardware/Firmware Requirements
The hardware/firmware requirements necessary for an ACPI implementation are described in
detail in the Developers Interface Guide for IA-64 Servers [DIG64] and the ACPI Specification
[ACPI1]. The UDIG focuses on the requirements necessary to implement ACPI on server
systems, and primarily on system configuration using ACPI in a UNIX environment.

2.3.1.1 Follow DIG-64 Hardware/Firmware Guidelines for ACPI

Required

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 2-6
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2.3.2 UNIX Operating System Requirements
The UNIX operating system requirements necessary for an ACPI implementation are described
below. The UDIG focuses on the requirements necessary to implement ACPI on server systems
running UNIX, and primarily on system configuration using ACPI. The power management
mechanisms of ACPI may be implemented based on an OEM’s particular market requirements,
e.g., to support dynamic device configuration.

2.3.2.1 Support for Memory Reporting Interfaces

Required

The UNIX operating system must discover all memory using the EFI memory reporting interface
GetMemoryMap(). This applies equally to all types of ACPI memory as well as normal physical
memory, device memory, and other types defined by [EFI1].

2.3.2.2 Support for ACPI Devices Defined in the ACPI Specification

Recommended

Each operating system should support its own subset of the devices defined in [ACPI1]
specification. These devices are hardware components outside of the core chipset. Examples of
devices that are supported via ACPI include LCD panels, video adapters, IDE CD-ROM, hard
disk controllers, COM ports, etc.

2.3.2.3 Provide an ACPI AML Interpreter

Required

Each operating system must provide an AML interpreter to create the ACPI namespace, and
execute control methods for device configuration.

2.3.2.4 Provide Configuration Support

Required

ACPI requires that the OS use existing resource configuration techniques, such as PCI
configuration, and combine the resources enumerated by ACPI into the OS conflict detection and
resolution algorithms supporting system events.

2.3.2.5 Provide Support for System Events via SCI and GPE

Recommended

The operating system should support event handling using the System Control Interrupt (SCI) and
the General Purpose Event (GPE) mechanisms defined by the ACPI specification [ACPI1].

2.3.2.6 Recognize Devices through the ACPI Namespace

Required

The operating system must have the capability to make the association between the _ADR and
the bus enumeration mechanism, even if a device is not present. Devices that exist on a bus that
has enumeration capability (for example the PCI bus) do not require ACPI enumeration. Devices

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2-7

that do not require ACPI enumeration are still required to have a _ADR object as defined by the
[ACPI1]. This object is used to map the device to the unique address of the device as it appears to
the enumeration mechanisms of the bus.

2.3.2.6.1 Devices that require ACPI enumeration

Required

For devices enumerated using ACPI the operating system must identify devices in the ACPI
namespace using the _HID object embedded in the device definition. The _HID Object evaluates
to a device’s Plug and Play Hardware ID. A device with a _HID may also have an optional _CID
that contains PnP IDs for compatible devices [ACPI1].

2.3.2.7 Use Resources Presented in the Namespace

Required

ACPI requires that devices use the _CRS named object to define the resources used by the device.
A device may also have a _PRS method defined that informs the operating system of other
possible resource definitions for this device. The _CRS and _PRS objects, along with others, are
defined in the ACPI specification [ACPI1].

2.3.2.8 Respond to Device Insertion and Removal

Recommended

The operating system should support device insertion and removal. This implies the capability to
load and unload (start/stop) drivers as devices appear and disappear.

2.3.2.9 Provide Device Power Management Support for D0 and D3

Recommended

The operating system should have an understanding or at least tolerance of power management.
This means that the operating system should allow devices to change power states and tolerate the
latencies resulting from the power state transitions. This is particularly useful for device insertion
and removal.

2.3.3 PCI Hot-plug
Recommended

The operating system should support PCI Hot-plug using ACPI mechanisms [ACPI2, and PCI
Hot-Plug Specification, Revision 1.0].

2.3.4 ACPI Subsystem
This section describes the guidelines for the implementation of an ACPI driver, hereinafter,
referred to as an ACPI subsystem [ACPI CA].

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 2-8
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

2.3.4.1 Implement an ACPI Subsystem

Required

Operating systems must provide an ACPI subsystem.

2.3.4.2 Implement ACPI subsystem External Interfaces

Recommended

To allow common applications to use the ACPI subsystem, the subsystem’s external interfaces
should comply with the reference implementation [ACPI CA].

2.3.4.3 Implement ACPI Subsystem Operating System Services

Recommended

If the operating system uses the reference implementation, it must provide services for memory
management, scheduling, synchronization and mutual exclusion, interrupt handling, and stream
I/O [ACPI CA].

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3-1

Chapter 3: Device Drivers and
Services
This chapter specifies requirements and guidelines on a device driver in UDIG-compliant
systems, and the driver services and infrastructure provided in UDIG-compliant systems. These
requirements and guidelines facilitate the timely development, support, validation, and testability
of third-party I/O devices and drivers in Intel -based Servers running UNIX or operating
systems like UNIX. Use of these requirements and guidelines results in a high degree of customer
confidence in the support and usability of I/O devices and corresponding drivers on Intel-based
UNIX servers.

This chapter should be of general interest to people developing drivers, driver services, and driver
infrastructure. However, the UDI Environment Implementer’s Guide section is specifically aimed
at services/infrastructure developers.

The basis for this chapter is the Uniform Driver Interface (UDI). More information on UDI is
available at the Project UDI Web site: http://www.project-udi.org. UDI solves the problem of
creating different drivers. Without UDI, developers must create different drivers for different
CPU architectures and operating systems, all of which must talk to the same hardware devices.
With UDI, developers write one driver. This driver is compiled and executed across all CPU
architectures and operating systems that support UDI. Some of the core features of UDI that
enable this capability are:

1. Implicit synchronization via regions.

2. Inter-module communication via channels.

3. Explicit definition of all driver interfaces.

This chapter is organized into the following main sections.

Source Specifications Defines, through reference to the UDI Specifications [UDI1], the
source-level interface requirements for UDIG-compliant device
drivers and services.

Binary Specifications Defines the binary interface requirements for a device driver on
IA-32 and IA-64 platforms. UDIG-compliant systems support
these binary interfaces, providing binary portability to a compliant
device driver.

Technology Profiles Provides the required and optional I/O technologies that are
provided in UDIG-compliant systems.

UDI Environment
Implementer’s Guide

Provides guidelines for system developers to facilitate the
development of driver services and infrastructure in UDIG-
compliant systems.

Reference
Implementation

Describes tools that are available to implementers.

http://www.sco.com/UDI

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 3-2
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Driver Development
Kits

UDI Driver Development Kits (DDKs) are expected to be
available from various OSVs. The Kit provides UDI build and
runtime environments, including driver packaging and build tools,
and other driver development materials, such as test suites and
driver writer’s guides.

3.1 Source Specifications

The I/O device driver support defined in this document provides for the broadest possible range
of I/O devices on Intel-based servers. To accomplish this goal and accommodate future growth,
the Uniform Driver Interface (UDI) Specifications [UDI1] serve as the foundation for UDIG-
compliant device driver support. The UDIG is based on the [UDI1].

3.1.1 UDI Specifications [UDI1]
The UDI Specifications define the environment for an I/O device driver by defining the interface
between a driver and the surrounding operating system. These specifications insulate a device
driver from the implementation details of the operating system and server platform the operating
system is installed on. Yet, the specifications are flexible enough to allow the driver full control
of its device within that operating system and platform environment.

The UDI Specifications are divided into a number of separate specifications based on technology
areas. The Technology Profiles section in this chapter lists the specific UDI specifications that
apply to UDIG-compliant systems.

The UDI Specifications define source-level interface requirements for a device driver. The
specifications also support the ability to easily define binary-level interface definitions based on
the source-level definitions. Binary interface definitions for IA-32 and IA-64 are defined in the
next section.

3.2 Binary Specifications

Binary-level specifications, referred to as Architected Binary Interface (ABI) bindings in the
[UDI1], are defined in this section for binary portability of UDI drivers for IA-32 and IA-64
systems. UDIG-compliant IA-32 systems must support the IA-32 binding; UDIG-compliant IA-
64 systems must support the IA-64 ABI binding.

As described in the UDI Core Specification [UDI2], a UDI ABI binding has the following
components.

• A processor architecture, supported instruction sets, endianness modes, and
corresponding subdirectory names for the UDI packaging format.

• An associated runtime architecture that defines the procedure calling conventions,
register usage, stack conventions, data layout, and so on.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3-3

• Binary bindings to the source-level UDI specifications: specifies the sizes of UDI
fundamental data types, and the binary-portability requirements of implementation-
dependent UDI macros.

• Building the driver object: specifies the object file format and the encapsulation of the
static driver properties in the object file.

3.2.1 IA-32 ABI Binding
The IA-32 ABI binding defines binary bindings for UDI driver modules that run on IA-32
processors. The driver is compiled once for IA-32 and distributed to any conforming IA-32
platform.

3.2.1.1 Processor Architecture

3.2.1.1.1 Supported processor types

Required

The IA-32 binding works across any processor that conforms to the 32-bit Intel architecture. This
includes the Intel processor types listed in Table 3-1. For maximum binary portability across IA-
32 processors, you must compile the driver so that it does not depend on any specific IA-32 target
processor type. Driver packages use the subdirectory named specified in Table 3-1 for its IA-32
driver binaries. All binary driver packages for IA-32 must include at least a generic IA32 binary,
but may also include one or more specific binaries.

3.2.1.1.2 Endianness

Required

The IA-32 ABI binding supports only little endian IA-32 binary UDI modules.

3.2.1.1.3 Driver packaging subdirectories

Required

The UDI packaging format specification defines a directory hierarchy. This hierarchy must
contain the various components of a UDI driver “package”. The package includes the files that
must be provided with a driver to make it installable and useable. In a driver package, one or
more bin directories contain the driver binaries. Beneath the bin directory, <abi> subdirectories
contain the driver binaries for a particular ABI. The <abi> subdirectory names defined for the IA-
32 ABI, with their corresponding processor types, are defined in Table 3-1 below. For more
information, see [UDI6] for additional details.

Note that the Pentium II Xeon™ processor and Celeron™ Processor share the same instruction
set with the Pentium II processor and thus correspond to IA32_P2. Likewise, the Pentium III
Xeon processor corresponds to IA32_P3.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 3-4
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Table 3-1 – <abi> subdirectories

Directory name Processor type

IA32 Any IA-32 Processor

IA32_P3 Pentium III Processor

IA32_P2 Pentium II Processor

IA32_PMMX Pentium Processor with MMX Technology

IA32_PPRO Pentium Pro Processor

IA32_P Pentium Processor

IA32_486 Intel486 Processor

IA32_386 Intel386 Processor

3.2.1.2 Runtime Architecture

Required

The runtime architecture for this IA-32 ABI binding shall be the IA-32 runtime architecture as
defined in the System V Application Binary Interface Specification [SAB1] and the
System V Application Binary Interface Intel 386 Architecture Processor Supplement Specification
[SAB2].

In particular, a compliant environment must provide an execution environment, implement object
file support, and provide linking and loading.

3.2.1.3 Binary Bindings to the Source Specifications

This section defines the binary bindings to the source-level UDI Specifications. Only a few
aspects of the source-level UDI Specifications are implementation-dependent, requiring
additional specification for binary portability. These fall into three categories: the sizes of
fundamental UDI data types, the binary-portability requirements of implementation-dependent
UDI macros, and the specification of UDI functional interfaces, other than the UDI utility
functions, that are allowed to be implemented as macros. Utility functions in UDI can always be
implemented as macros without breaking binary portability. For more information, see the
[UDI2].

3.2.1.3.1 Sizes of UDI-Specific data types

Required

As indicated in the introduction of [UDI2], an ABI specification must specify the size of each of
the following data types, defined as follows for the IA-32 ABI binding.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3-5

Table 3-2– UDI specific data types

Data Type Size Description

void * 32 bits Pointer type

udi_size_t 32 bits Abstract type – Size type

udi_index_t 8 bits Abstract type – Index type

udi_channel_t 32 bits Opaque type – Channel handle

udi_constraints_t 32 bits Opaque type – Constraints
handle

udi_timestamp_t 32 bits Opaque type – Timestamp type

udi_pio_handle_t 32 bits Opaque type – PIO handle

udi_dma_handle_t 32 bits Opaque type – DMA handle

3.2.1.3.2 Implementation-Dependent macros

Required

An implementation-dependent macro is an interface specified to be a macro, other than a utility
macro, in a UDI Specification [UDI1]. The macro expansion definition is implementation-
specific. Such macros may contain environment and platform dependencies that provide binary
portability. Such dependencies must be hidden behind an external function call. The ABI must
specify any such external symbol references.

Only the UDI Core Specification [UDI2] and the UDI Physical I/O Specification [UDI6] may
specify implementation-dependent macros. There are only two such macros in those
specifications: the UDI_HANDLE_ID macro and the UDI_HANDLE_IS_NULL macro.

For the IA-32 ABI, the UDI_HANDLE_ID macro must return the exact, non-transformed
contents of the specified handle, without producing any external symbol references. The actual C
definition of the macro may be provided in an implementation-dependent manner in udi.h.
Depending on the actual type definition of the handle type, acceptable definitions include

#define UDI_HANDLE_ID(handle, handle_type) \
((void *)(handle))

or
#define UDI_HANDLE_ID(handle, handle_type) \

(*(void **)&(handle))

For the IA-32 ABI, all handle types are 32 bits for the IA-32 ABI. Therefore, the
UDI_HANDLE_IS_NULL macro must return TRUE if the handle value is zero. This can be
done using appropriate void * casts and comparing against NULL. The actual C definition of the
macro may be provided in an implementation-dependent manner in udi.h. Depending on the
actual type definition of the handle type, acceptable definitions include

#define UDI_HANDLE_IS_NULL(handle, handle_type) \
((void *)(handle) == NULL)

or

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 3-6
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

#define UDI_HANDLE_IS_NULL(handle, handle_type) \
(*(void **)&(handle) == NULL)

3.2.1.3.3 UDI functions implemented as macros

Required

As previously noted, utility functions in UDI can always be implemented as macros without
breaking binary portability. However, ABI bindings must require each other UDI functional
interface to be implemented in one of two ways. One way is to implement the UDI functional
interface as an external function call. Another way is to optionally implement the interface as a
macro with any environment or platform dependencies hidden behind an external function call.
This external function call is specified by the ABI as part of the macro expansion.

For the IA-32 ABI, the only non-utility function that may be implemented as a macro is
udi_assert, which must call the following function when the assertion condition test fails:

void __udi_assert(const char *expr,
 const char *filename,
 int lineno);

3.2.1.4 Building the Driver Object

The [UDI2] defines the generic aspects of the packaging and distribution of UDI drivers, whether
distributed in source or binary format. The ABI binding defines the object file format and the
binding of the static driver properties to the driver’s object files.

3.2.1.4.1 Object file format

Required

The object file format for this IA-32 binding shall be the ELF-32 object file format as defined in
the [SAB1] and the [SAB2].

Any driver package that includes IA-32 binary modules must include IA-32 binary modules for
all modules in the driver package.

3.2.1.4.2 Static driver properties encapsulation

Required

A driver’s static driver properties shall be encapsulated in the ELF-32 object file of the driver’s
primary module, and in a special no-load section of that object file called .udiprops. The content
of this section is ASCII-encoded, null-terminated strings from the udiprops.txt file. The only
difference between the udiprops.txt file and the .udiprops section is that:

• Comments are removed.

• Extraneous white space is removed.

• Extraneous line terminations for a property value is removed so that each property value is a
single, null terminated string.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3-7

3.2.2 IA-64 ABI Binding
The IA-64 ABI binding defines binary bindings for UDI driver modules that run on IA-64
processors. This definition allows the driver to be compiled once for a target endianness for IA-64
systems and be distributed to any conforming IA-64 platform supporting that endianness.

3.2.2.1 Processor Architecture

3.2.2.1.1 Supported processor types

Required

The IA-64 binding is designed to work across any processor that conforms to the 64-bit Intel
architecture. This includes the Intel processor types listed in Table 3-3. For maximum binary
portability across IA-64 processors, you must compile the driver in a way that does not depend on
any specific IA-64 target processor type. In this case, the driver uses the subdirectory named
IA64_LE or IA64_BE for its IA-64 driver binaries. All binary driver packages for IA-64 must
include at least a generic IA64_LE/BE binary and may also include one or more specific
binaries.

3.2.2.1.2 Endianness

Required

The IA-64 ABI binding supports both big and little endian IA-64 binary UDI modules, but
UDIG-compliant IA-64 systems are only required to support one endianness or the other.

Recommended

It is recommended that little endian be supported.

3.2.2.1.3 Driver packaging subdirectories

Required

The [UDI1] must define a directory hierarchy that contains the various components of a UDI
driver “package”, such as the files provided with a driver to make it installable and useable. Each
driver package has one or more bin directories containing the driver binaries. The bin directory
has <abi> subdirectories containing the driver binaries for a particular ABI. The <abi>
subdirectory names defined for the IA-64 ABI, with their corresponding processor types, are
defined in Table 3-3. See [UDI1] for additional details.

Table 3-3 – <abi> directories for various processors

Directory Name Processor Type

IA64_LE Any IA-64 Processor in little-endian mode

IA64_BE Any IA-64 Processor in big-endian mode

IA64_LE_ITANIUM Intel Itanium™ processor in little endian mode

IA64_BE_ITANIUM Itanium processor in big endian mode

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 3-8
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3.2.2.2 Runtime Architecture

Required

The runtime architecture for this IA-64 ABI binding shall be the IA-64 runtime architecture as
defined in the IA-64 Software Conventions and Runtime Architecture Guide [SRC1] from Intel
and Hewlett-Packard. This is the definition of the runtime architecture that is common to all
operating environments on the IA-64 architecture.

3.2.2.3 Binary Bindings to the Source Specifications

This section defines the binary bindings to the source-level UDI Specifications. Only a few
aspects of the source-level UDI Specifications are implementation-dependent, requiring
additional specification for binary portability. These fall into three categories.

• The sizes of fundamental UDI-specific data types.
• The binary-portability requirements of implementation-dependent UDI macros.
• The specification of UDI functional interfaces, other than the UDI utility functions, that

are allowed to be implemented as macros. Utility functions in UDI can always be
implemented as macros without breaking binary portability. See the [UDI2] for details.

3.2.2.3.1 Sizes of UDI-Specific data types

Required

As indicated in the UDI Core Specification [UDI2], an ABI specification must specify the size of
each of the following data types for the IA-64 ABI binding.

Table 3-4 – Data types for the IA-64 ABI binding

Data Type Size Description

void * 64 bits Pointer type

udi_size_t 64 bits Abstract type – Size type

udi_index_t 8 bits Abstract type – Index type

udi_channel_t 64 bits Opaque type – Channel handle

udi_constraints_t 64 bits Opaque type – Constraints
handle

udi_timestamp_t 64 bits Opaque type – Timestamp type

udi_pio_handle_t 64 bits Opaque type – PIO handle

udi_dma_handle_t 64 bits Opaque type – DMA handle

3.2.2.3.2 Implementation-Dependent macros

Required

An implementation-dependent macro is an interface specified to be a macro, other than a utility
macro, in a UDI Specification [UDI1]. The Macro expansion definition is implementation-
specific. Such macros may contain environment and platform dependencies that, to provide
binary portability, must be hidden behind an external function call; any such external symbol
references must be specified in the ABI.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3-9

Only the UDI Core Specification [UDI2] and the UDI Physical I/O Specification [UDI6] may
specify implementation-dependent macros. There are only two such macros in those
specifications: the UDI_HANDLE_ID macro and the UDI_HANDLE_IS_NULL macro.

For the IA-64 ABI, the UDI_HANDLE_ID macro must return the exact, non-transformed
contents of the specified handle, without producing any external symbol references. The actual C
definition of the macro may be provided in an implementation-dependent manner in udi.h.
Depending on the actual type definition of the handle type and the target programming model
(e.g., LP64 vs. P64), acceptable definitions include

#define UDI_HANDLE_ID(handle, handle_type) \
((void *)(handle))

or
#define UDI_HANDLE_ID(handle, handle_type) \

(*(void **)&(handle))

For the IA-64 ABI, all handle types are 64 bits for the IA-64 ABI. Therefore, the
UDI_HANDLE_IS_NULL macro must return TRUE if the handle value is zero. This can be
done using appropriate void * casts and comparing against NULL. The actual C definition of the
macro may be provided in an implementation-dependent manner in udi.h. Depending on the
actual type definition of the handle type, acceptable definitions include

#define UDI_HANDLE_IS_NULL(handle, handle_type) \
((void *)(handle) == NULL)

or
#define UDI_HANDLE_IS_NULL(handle, handle_type) \

(*(void **)&(handle) == NULL)

3.2.2.3.3 UDI functions implemented as macros

Required

As previously noted, you can implement utility functions in UDI as macros without breaking
binary portability. However, ABI bindings must require each other UDI functional interface to be
implemented in one of two ways. One way is to implement the interface as an external function
call. Another way is to optimally implement the interface as a macro with any environment or
platform dependencies hidden behind an external function call. This external function call is
specified by the ABI as part of the macro expansion.

For the IA-64 ABI, the only non-utility function that may be implemented as a macro is
udi_assert, which must call the following function when the assertion condition test fails:

void __udi_assert(const char *expr,
 const char *filename,
 int lineno);

3.2.2.4 Building the Driver Object

The [UDI2] defines the generic aspects of the packaging and distribution of UDI drivers, whether
you are distributing it in source or binary format. The ABI binding defines the object file format,
and the binding of the static driver properties to the driver’s object files.

3.2.2.4.1 Object file format

Required

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 3-10
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

The object file format for this IA-64 binding shall be the ELF-64 object file format as defined in
the ELF-64 Object File Format Specification [ELF1], and in the Processor-Specific ELF
Supplement for IA-64 [ELF2].

The appropriate endian bit indicating the target endianness of the driver module must be set in the
ELF-64 file header, as defined in the [ELF1].

Any driver package that includes little endian IA-64 binary modules must include full IA-64
binary modules for all modules in the driver package. It is recommended that IA-32 little endian
binary modules be supplied as well.

System V ABI [SAB3] updates are available at http://www.sco.com/developer/devspecs/

3.2.2.4.2 Static driver properties encapsulation

Required

A driver’s static driver properties shall be encapsulated in the ELF-64 object file of the driver’s
primary module, in a special no-load section of the object file called .udiprops. The content is
ASCII-encoded, null-terminated strings from the udiprops.txt file. The only difference between
the udiprops.txt file and the .udiprops section is:

• Comments are removed.
• Extraneous white space is removed.
• Extraneous line terminations for a property value are removed so that each property

value is a single, null terminated string.

3.3 Technology Profiles

While IA-64 UDIG-compliant platforms are required to include the I/O hardware technologies
specified in [DIG64], this section lists those technologies that are supported through portable
driver interfaces. Corresponding software technologies are designated as either unconditionally
“required” or “required when present”. Unconditionally required technologies must be supported
on all UDIG-compliant systems by providing the corresponding portable driver interfaces
specified in this section. Technologies that are required when present are only required on
systems that support the corresponding hardware technology. When provided, they must use the
corresponding portable driver interfaces specified in this section.

To support the various types of I/O technologies that exist, UDI has defined three general classes
of interfaces: driver services (interfaces that a driver can call to obtain various services from the
embedding environment), metalanguages (interfaces for communication between driver modules,
typically grouped into technology areas such as SCSI, networking, or block storage), and bus
bindings (bindings of how the driver services are used with a particular type of I/O bus such as
PCI, EISA, or VME). The required technologies must be profiled relative to these three classes of
UDI interfaces.

To learn more about what metalanguages are available, see http://www.project-
udi.org/metalanguages.html.

http://www.sco.com/developer/devspecs/
http://www.sco.com/udi/metalanguages.html
http://www.sco.com/udi/metalanguages.html

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3-11

3.3.1 Driver Services
There are two UDI Specifications that specify general services available to the driver by the UDI
environment: the [UDI2] and the [UDI6]. These services must be provided in UDIG-compliant
systems as described below.

3.3.1.1 UDI Core Specification

Required

The [UDI2] defines the core set of UDI interfaces that are available to all UDI drivers and that are
required to be provided by all UDI environment implementations. Thus, the implementation of
[UDI2] is required in UDIG-compliant systems.

3.3.1.2 UDI Physical I/O Specification

Required

The [UDI6] defines UDI interfaces for PIO, DMA, and interrupts. Drivers that use such interfaces
are called “physical I/O drivers”. While the UDI Specifications do not require all environments to
support physical I/O drivers, those that do must conform to the generic portions of the [UDI6].
UDIG-compliant systems are required to support physical I/O drivers and must therefore
implement the interfaces in the [UDI6].

3.3.2 Metalanguages
On UDI systems, metalanguage libraries and mappers must be provided to support external bus
and device class technologies such as SCSI, networking, USB, and block storage. External bus
and device class technologies listed in the [DIG64] are supported by the following
metalanguages.

Table 3-5 – Metalanguages

Metalanguage Compliance Comments

SCSI Required Support for SCSI adapters, both those that interface to a
parallel SCSI bus and those that provide (together with the
driver) SCSI encapsulated over a serial link such as Fibre
Channel, is required in UDIG-compliant systems.
Therefore, UDIG-compliant systems are required to support
the UDI SCSI Driver Specification [UDI4].

Networking Required Support for Network Interface Controllers (NICs) is required
on UDIG-compliant systems. Therefore, UDIG-compliant
systems are required to support the UDI Network Driver
Specification [UDI5].

USB Required
when present

UDIG-compliant systems that support USB devices must
support the Open USBDI Specification [USB1].

Currently, specification for Block Storage, Bus Bridge, and Intelligent I/O (I2O) are under
development.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP 3-12
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3.3.3 Bus Bindings
The [UDI1] defines a number of bus bindings that establish UDI interfaces specific to particular
I/O bus types. UDIG-compliant systems that support any of the I/O bus types below are required
to support the corresponding UDI Bus Binding Specification.

Table 3-6 – UDI Bus Binding Specification

Bus Compliance Comments

PCI Required Support for the UDI PCI Bus Binding Specification [UDI3] is
required.

Currently, Bus Bindings for System, ACPI, ISA, EISA, and VME are under development under
the guidance of Project UDI.

3.4 UDI Environment Implementer’s Guide

The UDI Environment Implementer’s Guide is expected to be available from UDI. The Uniform
Driver Interface (UDI) specifications define a complete environment for the development of a
device driver. This includes a driver architectural model and the complete set of services and
other interfaces needed by a device driver to control its device or pseudo-device, and to interact
properly with the rest of the system in which it operates. This environment in which a driver
operates, called the UDI environment, must be provided in each operating system or operating
environment in which UDI drivers operate. See the Project UDI web page at http://www.project-
udi.org for additional information.

3.5 Reference Implementation

An implementation of the UDI environment services and sample UDI drivers are provided by
Project UDI. This open source code implementation is released into the public domain to enable
quick spread of the UDI technology to a wide range of platforms and drivers. It is expected to
initially provide support for most of the major UNIX vendors as well as Linux*.

This reference implementation has been co-developed by a number of OSVs and IHVs with this
goal – easing the spread of the UDI technology – in mind, and the result is an implementation of
the UDI environment in which much of the environment code is common across the range of
supported operating systems. For example, UDI’s buffer management services are coded as a
common piece of source code with OS dependencies abstracted via a handful of OS-dependent
macros. Thus, to get these buffer management services implemented for a new operating system
all that the OS implementor has to do is to fill in the handful of macros to map to the needs of that
operating system. Some operating systems may require additional work, depending on how
closely the operating system’s kernel services map to the reference implementation assumptions,
but in any case this is a significant aid to new development.

The reference implementation is a tool that is used by the industry at large in the development of
UDI environments and drivers. See the Project UDI Web page at http://www.project-udi.org for
additional information.

http://www.sco.com/UDI
http://www.sco.com/UDI
http://www.sco.com/UDI

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3-13

3.6 Driver Development Kits

UDI Driver Development Kits (DDKs) are expected to be available from various OSVs. The Kit
provides UDI build and runtime environments, including driver packaging and build tools, and
other driver development materials, such as test suites and driver writer’s guides. See the Project
UDI Web page at http://www.project-udi.org for additional information.

This Web page also includes introductory and tutorial materials useful for UDI device driver
writers.

http://www.sco.com/UDI

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-1

Appendix A: ACPI Component
Architecture: ACPI Subsystem

Table of Figures

Figure 1. The ACPI Component Architecture ..A-3

Figure 2. ACPI Subsystem Architecture ..A-5

Figure 3. Interaction Between the Architectural Components ...A-6

Figure 4. Internal Modules of the OS-Independent Component..A-7

Figure 5. Operating System to ACPI Subsystem Request Flow ...A-11

Figure 6. ACPI Subsystem to Operating System Request Flow ...A-12

Figure 7. Internal Namespace Structure..A-15

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-2 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Introduction
This appendix does not contain extensions for IA-64. As such, it is an interim document
describing IA-32 implementation. The IA-64 extensions will be incorporated into a future release
of the document after IA-64 architecture public disclosure.

Document Structure

This appendix consists of five major sections:

• Introduction: A brief overview of the ACPI Component Architecture (CA) and the
interfaces for both the OS-independent and OS-dependent components.

• Using the ACPI Subsystem: Contains the information required to use the subsystem
(both the OSI and OSD components) and the related interfaces. There is a summary of
the computational and architectural model that is implemented by the ACPI component
architecture, as well as a summary of the major data types and data structures that are
exposed via the external interfaces.

• OS-Independent Component Interfaces: This section includes a detailed description
of the programmatic interfaces to the OS-independent component of the ACPI
subsystem.

• OS-Dependent Component Interfaces: This section includes a detailed description of
the programmatic interfaces that must be implemented in the OS-dependent
component.

• User Guide: This section includes tips and techniques on using the OS-independent
interfaces, and implementing the OS-dependent interfaces to host a new operating
system.

Rationale and Justification

The complexity of the ACPI specification leads to a lengthy and difficult implementation in
operating system software. The purpose of the ACPI component architecture is to simplify ACPI
implementations for operating system vendors (OSVs) by providing major portions of an ACPI
implementation in OS-independent ACPI modules that can be integrated into any operating
system. The OS-independent software can be hosted on any operating system by creating a small
and relatively simple OS-dependent translation service between the OS-independent component
of the ACPI subsystem and the host operating system.

Reference Documents

• Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-3

Overview of the ACPI Component Architecture
(ACPI CA)

The ACPI Component Architecture (ACPI CA) defines and a group of software components that
combine to create an implementation of the ACPI specification. A major goal of the architecture
is to maximize the amount of code that has no dependencies on any individual operating system
(the OS-independent code) and to minimize the amount of code that is specific to a particular
operating system (the OS-dependent code). The components of the architecture include:

• A user interface to the power management and configuration features.
• A power management and power policy component (OSPM).
• A configuration management component.
• ACPI-related device drivers (for example, drivers for the Embedded Controller,

SMBus, Smart Battery, and Control Method Battery.
• An ACPI Subsystem component that provides the fundamental ACPI services.

This document describes the ACPI Subsystem portion of the architecture only. Other components
of the Component Architecture are described in related documents.

Operating System

Policy
Manager

Device
Drivers

ACPI Subsystem
ACPI-

Related
Hardware

User Interface

Figure 1. The ACPI Component Architecture

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-4 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Overview of the ACPI Subsystem

The ACPI Subsystem implements the low level or fundamental aspects of the ACPI specification.
Included are an AML interpreter, ACPI namespace, table, and device support, and event
handling. Similar to the other components of the ACPI Component Architecture, the ACPI
Subsystem is divided into a part that is independent of specific operating systems and a part that
is implemented to run on one specific OS. Thus, the ACPI Subsystem consists of two major
software components:

• An OS-independent component (OSI) provides the fundamental ACPI services that are
independent of any particular operating system.

• The OS-dependent component (OSD) provides the conversion layer that interfaces the
OS-independent component to a particular host operating system.

When combined into a single loadable software module such as a device driver or kernel
subsystem, these two major components form the ACPI Subsystem. Throughout this document,
the term “ACPI Subsystem” refers to the combination of the OSI and OSD components into a
single module, driver, or load unit.

ACPI OS-Independent Component
The OS-independent component (OSI) supplies the major building blocks or subcomponents that
are required for any ACPI implementation—including an AML interpreter, a namespace
manager, ACPI event and resource management, and ACPI hardware support.

One of the goals of the OSI is to provide an abstraction level high enough such that the OSD does
not need to understand or know about the very low-level ACPI details. For example, all AML
code is hidden from the OSD and host operating system. Also, the details of the ACPI hardware
are abstracted to higher level software interfaces.

The OSI implementation makes no assumptions about the host operating system or environment.
The only way it can request operating system services is via interfaces provided by the OS-
dependent component.

The primary user of the services provided by the OS-independent component is the OS-dependent
component, since it is the OS-dependent component that provides an external interface
appropriate for the host operating system (for example, the ACPI subsystem may be constructed
to appear as a device driver to the host OS).

ACPI OS-Dependent Component
The OS-dependent component (OSD) operates as a bi-directional translation service for both
requests from the host OS to the ACPI subsystem, and from the ACPI subsystem to the host OS.
These two functions are independent of each other in many ways. In one direction, the OSD
translates host OS requests from the native format into one or more calls to the ACPI OS-
independent component. In the other direction, the OSD implements a generic set of OS service
interfaces by using the primitives available from the host OS.

Because of its nature, the OS-dependent component must be implemented anew for each
supported host operating system. There is a single OS-independent component, but there must be

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-5

an OS-dependent component for each operating system supported by the ACPI component
architecture.

The primary function of the OSD in the ACPI Component Architecture is to be the small glue
layer that binds the much larger OSI to the host operating system. Because of the nature of ACPI
itself—such as the requirement for an AML interpreter and management of a large namespace
data structure—most of the implementation of the specification is independent of any operating
system services. Therefore, the OSI is the larger of the two components.

The overall ACPI Component Architecture in relation to the host operating system is diagrammed
below.

OS-Dependent Component

OS-Independent Component

Host Operating System

ACPI CA Subsystem

Figure 2. ACPI Subsystem Architecture

Relationships Between the Host Operating System,
OSD, and OSI

Host Operating System Interaction

The Host Operating System makes requests to the ACPI subsystem using the OS-dependent
interface that is defined between the OSD component and the Host OS. The host typically does
not make calls directly to the OSI component because the Acpi* interfaces are typically too low-
level for the host. Also, the direct call interface to the OSI is probably not appropriate for the
host-to-OSD interface—a device driver interface is far more likely to be used instead. In this
sense, the OSD component acts as a “wrapper” for the OSI component.

The OSD component “calls up” to the host operating system whenever operating system services
are required, either for the OSD itself, or on behalf of the OSI component. All native calls directly
to the host are confined to the OS-dependent component, for obvious reasons.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-6 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

OS-Dependent Component Interaction

The OS-dependent component implements two types of interfaces, one for each of two distinct
callers:

• The Host OS interface is the only external (public) interface from the host OS into the ACPI
subsystem. The mechanism used to implement this interface can be whatever is appropriate
for the host OS—such as a device driver or internal subsystem interface. The OSD-host OS
interface receives ACPI requests from the operating system and translates them into one or
more requests to the OSI component. Therefore, the OSD calls the OSI to implement the host
OS interface.

• The Osd* interfaces provide common operating system services to the OSI such as memory
allocation ,mutual exclusion, hardware access, and I/O. The OSI component uses these
interface to gain access to OS services in an OS-independent manner. Therefore, the OSD
component makes calls to the host operating system to implement the Osd* interface.

OS-Independent Component Interaction

The OS-independent component implements a single type of interface:

• The Acpi* interfaces provide the actual ACPI services. When operating system services are
required during the servicing of an ACPI request, the OSI makes requests to the host OS
indirectly via the fixed Osd* interfaces.

The diagram below illustrates the relationships and interaction between the various architectural
elements by showing the flow of control between them. Note that the host never calls the OSI
directly—it accesses services that are provided by the OSD. Also, the OSI never calls the host
directly—instead it makes calls to the Osd* interfaces in the OSD. It is this level of indirection in
both directions that allows the OSI to be truly operating system independent.

OSI Component

OSD Component

Implements
Acpi*

Interfaces

Implements
Osd*

Interfaces

Implements
Host OS
Interface

Host

Operating

System

ACPI Subsystem

Figure 3. Interaction Between the Architectural Components

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-7

Architecture of the OS-Independent Component
(OSI)

The OS-independent component is divided into several logical modules or sub-components. Each
module implements a service or group of related services. This section describes each sub-
component and identifies the classes of external interfaces to the components, the mapping of
these classes to the individual components, and the interface names.

These ACPI modules are the OS-independent parts of an ACPI implementation that can share
common code across all operating systems. These modules are delivered in source code form (the
language used is ANSI C), and can be compiled and integrated into an OS-specific ACPI driver
or subsystem (or whatever packaging is appropriate for the host OS.)

The diagram below shows the various internal modules of the OS-independent component and
their relationship to each other. The AML interpreter forms the foundation of the component,
with additional services built upon this foundation.

ACPI Table
Management

Event
Management

ACPI H/W
Management

Resource
Management

AML Interpreter

Namespace
Management

Figure 4. Internal Modules of the OS-Independent Component

AML Interpreter
The AML interpreter is responsible for execution of the AML code that is provided by the
computer system vendor. Most of the other services are built upon the AML interpreter.
Therefore, there are no direct external interfaces to the interpreter. The services that the
interpreter provides to the other services include:

• AML Control Method Execution
• Evaluation of Namespace Objects

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-8 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

ACPI Table Management
This component manages the ACPI tables such as the RSDT, FACP, FACS, DSDT, etc. The
tables may be loaded from the firmware or directly from a buffer provided by the host operating
system. Services include:

• ACPI Table Parsing
• ACPI Table Verification
• ACPI Table installation and removal

Namespace Management
The Namespace component provides ACPI namespace services on top of the AML interpreter. It
builds and manages the internal ACPI namespace. Services include:

• Namespace Initialization from either the BIOS or a file
• Device Enumeration
• Namespace Access
• Access to ACPI data and tables

Resource Management
The Resource component provides resource query and configuration services on top of the
Namespace manager and AML interpreter. Services include:

• Getting and Setting Current Resources
• Getting Possible Resources
• Getting IRQ Routing Tables
• Getting Power Dependencies

ACPI Hardware Management
The hardware manager controls access to the ACPI registers, timers, and other ACPI-related
hardware. Services include:

• ACPI Status register and Enable register access
• ACPI Register access (generic read and write)
• Power Management Timer access
• Legacy Mode support
• Global Lock support
• Sleep Transitions support (S-states)
• Processor Power State support (C-states)
• Other hardware integration: Throttling, Processor Performance, etc.

Event Handling
The Event Handling component manages the ACPI System Control Interrupt (SCI). The single
SCI multiplexes the ACPI timer, Fixed Events, and General Purpose Events (GPEs). This
component also manages dispatch of notification and Address Space/Operation Region events.
Services include:

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-9

• ACPI mode enable/disable
• ACPI event enable/disable
• Fixed Event Handlers (Installation, removal, and dispatch)
• General Purpose Event (GPE) Handlers (Installation , removal, and dispatch)
• Notify Handlers (Installation, removal, and dispatch)
• Address Space and Operation Region Handlers (Installation, removal, and dispatch)

Architecture of the OS Dependent Component
(OSD)

The OS dependent component of the architecture enables the rehosting or retargeting of the OSI
component to execute under multiple operating systems. In other words, the OSD component
provides the glue that joins the OS-independent component to a particular operating system. The
OSD implements interfaces and services using the system calls and utilities that are available
from the host OS. Therefore, an OS-dependent component must be written for each target
operating system.

The OS dependent component has several roles.

• It acts as the front-end for OS to ACPI requests. It translates OS requests that are
received in the native OS format (such as a system call interface, an I/O request/result
segment interface, or a device driver interface) into calls to OSI interfaces.

• It exposes a set of OS specific application interfaces. These interfaces translate
application requests to ACPI APIs.

• The OSD component implements a standard set of interfaces that perform OS
dependent functions (such as memory allocation and hardware access) on behalf of the
OSI component. These interfaces are themselves OS-independent because they are
constant across all OSD implementations. It is the implementation of these interfaces
that are OS-dependent, because they must use the native services and interfaces of the
host operating system.

Functional Service Groups
The services provided by the OS dependent component can be categorized into several distinct
groups, mostly based upon when each of the services are required. There will be boot time
functions, device load time functions, run time functions, and asynchronous functions.

The OS-dependent component exposes these services to the software above it via interfaces that
can be used by the host operating system, device drivers, and applications. These interfaces are
not defined by this document because they are highly dependent on the host OS. For example, if
the OS-dependent and OS-independent components are bundled together to form an ACPI device
driver, the interfaces to the driver may be in the form of IOCTL requests or some other form of
I/O request block. On the other hand, if the ACPI subsystem is integrated into the host operating
system as a standard OS subsystem, the interfaces to the OS-dependent component may take the
form of a more conventional system call interface, or even simply a local procedure call interface.

Although it is the OS-dependent component that exposes these services to the rest of the
operating system, it is very important to note that the OS-dependent component makes use of the

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-10 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

services of the lower-level OS-independent component to implement its services. It is the intent
of the component architecture that the OSI is a service that is private to the OSD—that is, that
only the OSD makes calls to the OSI.

OS Bootload-time Services

Boot services are those functions that must be executed very early in the OS load process, before
most of the rest of the OS initializes. These services include the ACPI subsystem initialization,
ACPI hardware initialization, and execution of the _INI control methods for various devices
within the ACPI namespace.

Device Driver Load-time Services

For the devices that appear in the ACPI namespace, the operating system must have a mechanism
to detect them and load device drivers for them. The Device driver load services provide this
mechanism. The ACPI subsystem provides services to assist with device and bus enumeration,
resource detection, and setting device resources.

OS Run-time Services

The runtime services include most if not all of the external interfaces to the ACPI subsystem.
These services also include event logging and power management functions.

Asynchronous Services

The asynchronous functions include interrupt servicing (System Control Interrupt), Event
handling and dispatch (Fixed events, General Purpose Events, Notification events, and Operation
Region access events), and error handling.

Required Functionality
There are three basic functions of the OS-dependent component:

1. Manage the initialization of the entire ACPI subsystem, including both the OS-dependent and
OS-independent components.

2. Translate requests for ACPI services from the host operating system (and its applications)
into calls to the OSI component. This is not necessarily a one-to-one mapping. Very often, a
single operating system request may be translated into many calls into the OS-independent
component.

3. Implement an interface layer that the OSI component uses to obtain operating system
services. These standard interfaces (defined in this EPS as the Osd* interfaces) include
functions such as memory management and thread scheduling, and must be implemented
using the available services of the host operating system.

This section discusses the services and interfaces that the OS dependent component is required to
provide. Only the external definition of these interfaces is clearly defined by this document. The
actual implementation of the services and interfaces is OS dependent and may be very different
for different operating systems.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-11

Requests from the Operating System to the ACPI Subsystem

OS to ACPI requests are by their nature very dependent upon the structure of the operating
system. For example, the data format the OS requires to maintain resources will vary greatly from
OS to OS. One of the roles of the OS-dependent component is to translate native operating
system ACPI requests into calls to the OS-independent component. For example, the OS-
dependent component must translate the ACPI resource structure to the native OS resource
structure.

The exact ACPI services required (and the requests made to those services) will vary from OS to
OS. However, it can be expected that most OS requests will fit into the broad categories of the
functional service groups described earlier: boot time functions, device load time functions, and
runtime functions.

The flow of OS to ACPI requests is shown in the diagram below.

ACPI Subsystem

OS-Dependent Component

OS-Independent Component

Requests From Host OS

Figure 5. Operating System to ACPI Subsystem Request Flow

Requests from Applications to the ACPI Subsystem

Application level interfaces should be provided in the OS-dependent component to enable the
creation of user interfaces for configuration and management of the ACPI system by either the
OS vendor or third party software vendors.

The application interfaces must include sufficient functionality that an application will be able to
present to the user a clear picture of the ACPI namespace including the interdependencies for
enumeration, power, and data.

The type and style of these application interfaces is completely dependent on the architecture of
the host operating system and where the ACPI subsystem fits into that architecture. The interfaces
may be device driver style interfaces, or system calls into an operating system layer.

Requests from the ACPI Subsystem to the Operating System

ACPI to OS requests are requests for OS services made by the ACPI subsystem. These requests
must be serviced (and therefore implemented) in a manner that is appropriate to the host

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-12 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

operating system. These requests include calls for OS dependent functions such as I/O, resource
allocation, error logging, and user interaction. The ACPI Component Architecture defines
interfaces to the OS-dependent component for this purpose. These interfaces are constant (i.e.,
they are OS-independent), but they must be implemented uniquely for each target OS.

The flow of ACPI to OS requests is shown in the diagram below.

ACPI Subsystem

OS-Dependent Component

OS-Independent Component

Requests To Host OS

Figure 6. ACPI Subsystem to Operating System Request Flow

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-13

Using the ACPI Subsystem
This section contains information about concepts, data types, and data structures that are common
to both the OSI and OSD components of the ACPI Subsystem.

Namespace Fundamentals

The ACPI Namespace is a large data structure that is constructed and maintained by the OSI
component. Constructed primarily from the AML defined within an ACPI Differentiated System
Description Table (DSDT), the namespace contains a hierarchy of named ACPI objects.

Named Objects
Each object in the namespace has a fixed 4-character name (32-bits) associated with it. The root
object is referenced by the backslash as the first character in a pathname. Pathnames are
constructed by concatenating multiple 4-character object names with a period as the name
separator.

Scopes
The concept of an object scope relates directly to the original source ASL that describes and
defines an object. An object’s scope is defined as all objects that appear between the pair of open
and close brackets immediately after the object. In other words, the scope of an object is the
container for all of the children of that object.

In some of the ACPI CA interfaces, it is convenient to define a scope parameter that is meant to
represent this container. For example, when converting an ACPI name into an object handle, the
two parameters required to resolve the name are the name itself, and a containing scope where the
name can be found. When the object that matches the name is found within the scope, a handle to
that object can be returned.

Example Scopes, Names, and Objects

In the ASL code below, the scope of the object _GPE contains the objects _L08 and _L0A.

Scope (_GPE)
{

Method (_L08)
{

Notify (_SB.PCI0.DOCK, 1)
}

Method (_L0A)
{

Store (0, _SB.PCI0.ISA.EC0.DCS)
}

}

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-14 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

In this example, there are three ACPI namespace objects, about which we can observe the
following:

• The names of the three objects are _GPE, _L08, and _L0A.
• The child objects of parent object _GPE are _L08 and _L0A.
• The absolute pathname (or fully qualified pathname) of object _L08 is “_GPE._L08”.
• The scope of object _GPE contains both the _L08 and _L0A objects.
• The objects _L08 and _L0A have no scope associated with them in the internal

namespace since they do not define any child objects.
• The containing scope of object _L08 is the scope owned by the object _GPE.
• The parent of both objects _L08 and _L0A is object _GPE.
• The type of both objects _L08 and _L0A is ACPI_TYPE_Method.
• The next object after object _L08 is object _L0A. In the example _GPE scope, there are

no additional objects after object _L0A.
• Since _GPE is a namespace object at the root level (as indicated by the preceding

backslash in the name), its parent is the root object, and its containing scope is the root
scope.

Predefined Objects
During initialization of the internal namespace within OSI component, there are several
predefined objects that are always created and installed in the namespace, regardless of whether
they appear in any of the loaded ACPI tables. These objects and their associated types are shown
below.

"_GPE", ACPI_TYPE_Any // General Purpose Event block
"_PR_", ACPI_TYPE_Any // Processor block
"_SB_", ACPI_TYPE_Any // System Bus block
"_SI_", ACPI_TYPE_Any // System Indicators block
"_TZ_", ACPI_TYPE_Any // Thermal Zone block
"_REV", ACPI_TYPE_Number // Revision
"_OS_", ACPI_TYPE_String // OS Name
"_GL_", ACPI_TYPE_Mutex // Global Lock

Logical Namespace Layout
In the diagram below, the preceding two sections are combined to show the logical namespace
after the predefined objects and the _GPE scope has been entered.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-15

_L08

_L0A

_GPE

PR

SB

SI

TZ

_REV

OS

GL

\

ACPI_ROOT_OBJECT

_GPE Scope

ACPI_ROOT_SCOPE

Figure 7. Internal Namespace Structure

Execution Model

Initialization
The initialization of the OS-independent component must be driven entirely by the OS-dependent
component. Since it may be appropriate (depending on the requirements of the host OS) to
initialize different parts of the OSI at different times, the OSI initialization is a multi-step process
that must be coordinated by the OSD. The four main steps are outlined below.

1. Perform a global initialization of the OSI: This initializes the global data and other items
within the OSI.

2. Load the ACPI tables. The FACS, DSDT, etc. must be copied (or mapped) into the OSI
before the internal namespace can be constructed. The tables may be loaded from the
firmware, loaded from a input buffer, or some combination of both.

3. Build the internal namespace: This causes the OSI to parse the DSDT and build an internal
namespace from the objects found therein.

4. Enable ACPI mode of the machine. Before ACPI events can occur, the machine must be put
into ACPI mode. The OSI installs an interrupt handler for the System Control Interrupts
(SCIs) and transitions the hardware from legacy mode to ACPI mode.

Memory Allocation
All interfaces to the OS-independent portion of the ACPI subsystem require the caller (usually the
OS-dependent portion) to allocate any required memory. This allows maximum flexibility for the
caller since only the caller knows what is the appropriate memory pool to allocate from, whether
to statically or dynamically allocate the memory, etc.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-16 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

It is often the case that the required buffer size is not known by even the ACPI subsystem until
after the evaluation of an object or the execution of a control method has been completed.
Therefore, the “get size” model of a separate interface to obtain the required buffer size is
insufficient. Instead, a model that allows the caller to pre-post a buffer of a large enough size has
been chosen. This model is described below.

For ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol can be used to determine the exact buffer size required:

1. Set the buffer length field of the ACPI_BUFFER structure to zero, or to the size of a local
buffer that is thought to be large enough for the data.

2. Call the Acpi interface.

3. If the return exception code is AE_BUFFER_OVERFLOW, the buffer length field has been
set by the interface to the buffer length that is actually required.

4. Allocate a buffer of this length and initialize the length and buffer pointer field of the
ACPI_BUFFER structure.

5. Call the Acpi interface again with this valid buffer of the required length.

Alternately, if the caller has some idea of the buffer size required, a buffer can be posted in the
original call. If this call fails, only then is a larger buffer allocated. See section 0
ACPI_BUFFER–Input and Output Memory Buffers for additional discussion on using the
ACPI_BUFFER data type.

Parameter Validation
Only limited parameter validation is performed on all input parameters passed to the OS-
independent component. All calls to the OS-independent code should come from the OS-
dependent portion, not directly from user or application code. Therefore, the OS-dependent code
is a trusted portion of the kernel code, and should perform all limit and range checks on buffer
pointers, strings, and other input parameters before passing them down to the OS-independent
code.

The limited parameter validation consists of sanity checking input parameters for non-zero values
and nothing more. Any additional parameter validation (such as buffer length validation) must
occur in the OSD component.

Exception Handling
All exceptions that occur during the processing of a request to the OS-independent component are
translated into the appropriate ACPI_STATUS return code and bubbled up to the original caller.

All exception handling is performed inline by the caller to the OSI interfaces. There are no
exception handlers associated with either the Acpi* or Osd* calls.

Multitasking and Reentrancy
NOTE: The current implementation of the OSI is single threaded only.

All components of the ACPI subsystem are intended to be fully reentrant and support multiple
threads of execution. To achieve this, there are several mutual exclusion OSD interfaces that must

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-17

be properly implemented with the native host OS primitives to ensure that mutual exclusion and
synchronization can be performed correctly. Although dependent on the correct implementation
of these interfaces, the OS-independent component is otherwise fully reentrant and supports
multiple threads throughout the component, with the exception of the AML interpreter, as
explained below.

Because of the constraints of the ACPI specification, there is a major limitation on the
concurrency that can be achieved within the AML interpreter portion of the subsystem. The
specification states that at most one control method can be actually executing AML code at any
given time. If a control method blocks (an event that can occur only under a few limited
conditions), another method may begin execution. However, it can be said that the specification
precludes the concurrent execution of control methods. Therefore, the AML interpreter itself is
essentially a single-threaded component of the ACPI subsystem. Serialization of both internal and
external requests for execution of control methods is performed and managed by the front-end of
the interpreter.

Event Handling
The term Event Handling is used somewhat loosely to describe the class of asynchronous events
that can occur during the execution of the ACPI subsystem. These events include:

• System Control Interrupts (SCIs) that are generated by both the ACPI Fixed and
General Purpose Events.

• Notify events that are generated via the execution of the ASL Notify keyword in a
control method.

• Events that are caused by accesses to an address space or operation region during the
execution of a control method.

Each of these events and the support for them in the ACPI subsystem are described in more detail
below.

Fixed Events

Incoming Fixed Events can be handled by the default ACPI subsystem event handlers, or
individual handlers can be installed for each event. Only device drivers or system services should
install such handlers.

General Purpose Events

Incoming General Purpose Events (GPEs) are usually handled by executing a control method that
is associated with a particular GPE. According to the ACPI specification, each GPE level may
have a method associated with it whose name is of the form _Txx, where xx is the GPE level in
hexadecimal (See the ACPI specification for complete details.) This control method is not
executed in the context of the SCI interrupt handler, but is instead queued for later execution by
the host operating system.

In addition to this mechanism, individual handlers for GPE levels may be installed. It is not
required that a handler be installed for a GPE level, and in fact, currently the only device that
requires a dedicated GPE handler is the ACPI Embedded Controller. A device driver for the
Embedded Controller would install a handler for the GPE that is dedicated to the EC.

If a GPE handler is installed for a given GPE, the handler is invoked first, then the associated
control method (if any) is queued for execution.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-18 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Notify Events

An ACPI Notify Event occurs as a result of the execution of a Notify opcode during the execution
of a control method. A notify event occurs on a particular ACPI object, and this object must be a
device or thermal zone. If a handler is installed for notifications on a particular device, this
handler is invoked during the execution of the Notify opcode, in the context of the thread that is
executing the control method.

Notify handlers should be installed by device drivers and other system services that know about
the particular device or thermal zone on which notifications will be received.

Address Spaces and Operation Regions
ASL source code and the corresponding AML code use the Address Space mechanism to access
data that is out of the direct scope of the ASL. For example, Address Spaces are used to access
the CMOS RAM and the ACPI Embedded Controller. There are several pre-defined Address
Spaces that may be accessed and user-defined Address Spaces are allowed.

The Operating System software (which includes the AML Interpreter) allows access to the
various address spaces via the ASL Operation Region (OpRegion) construct. An OpRegion is a
named window into an address space. During the creation of an OpRegion, the ASL programmer
defines both the the boundaries (window size) and the address space to be accessed by the
OprRegion. Specific addresses within the access window can then be defined as named fields to
simplify their use.

The AML Interpreter is responsible for translating ASL/AML references to named Fields into
accesses to the appropriate Address Space. The interpreter resolves locations within an address
space using the field’s address within an OpRegion and then the OpRegion’s offset within the
address space. The resolved address, address access width, and function (read or write) are then
passed to the address space handler who is responsible for performing the actual physical access
of the address space.

Installation of Address Space Handlers

At runtime, the ASL/AML code cannot access an address space until a handler has been installed
for that address space. An ACPI CA user can either install the default address space handlers or
install user defined address space handlers using the AcpiInstallAddressSpaceHandler interface.

Each Address Space is “owned” by a particular device such that all references to that address
space within the scope of the device will be handled by that device’s address space handler. This
mechanism allows multiple address space/operation region handlers to be installed for the same
type of address space, each mutually exclusive by virtue of being governed by the ACPI address
space scoping rules. For example, picture a platform with two SMBus devices, one an embedded
controller based SMBus; the other a PCI based SMBus. Each SMBus must expose its own
address space to the ASL without disrupting the function of the other. In this case, there may be
two device drivers and two distinctly different address space handlers, one for each type of
SMBus. This mechanism can be employed in a similar manner for the other predefined address
spaces. For example, the PCI Configuration space for each PCI bus is unique to that bus. Creation
of a region within the scope of a PCI bus must refer only to that bus.

Address space handlers must be installed on a named object in the ACPI namespace or on the
special object ACPI_ROOT_OBJECT. This is required to maintain the scoping rules of address

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-19

space access. Address handlers are installed for the namespace object representing the device that
“owns” that address space. Per ASL rules, regions that access that address space must be declared
in the ASL within the scope of that namespace object.

It is the responsibility of the ACPI CA user to enumerate the namespace and install address
handlers as needed.

ACPI-Defined Address Spaces

The ACPI 1.0b specification defines address spaces for:

• System Memory
• System I/O
• PCI Configuration Space
• System Management Bus (SMBus)
• Embedded Controller

The ACPI CA subsystem implements default address space handlers for the following ACPI
defined address spaces:

• System Memory
• System I/O
• PCI Configuration Space

Default address space handlers can be installed by supplying the special value
ACPI_DEFAULT_HANDLER as the handler address when calling the
AcpiInstallAddressSpaceHandler interface.

The other predefined address spaces (Embedded Controller and SMBus) have no default handlers
and will not be accessible without OS provided handlers. This is typically the role of the
Embedded Controller and SMBus device drivers.

Environmental Support Requirements

This section describes the environmental requirements of the ACPI subsystem. This includes the
external functions and header files that the subsystem uses, as well as the resources that are
consumed from the host operating system.

Required C Library Functions
In order to make the OS-independent component as portable and truly OS-independent as
possible, there is only extremely limited use of standard C library functions within the OSI
component itself. The calls are limited to those that can generate code in-line or link to small,
independent code modules. Below is a comprehensive list of the C library functions that are
called by the OSI code.

sprintf
memcpy
memset
strcat
strcmp
strcpy
strlen

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-20 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

strncmp
strncat
strncpy
strtoul
va_list
va_start
va_end

If a kernel-level C library is unavailable for any reason, these functions could be implemented in
the OSD with little difficulty.

System Include Files
The following include files (header files) are useful for users of both the Acpi* and Osd*
interfaces:

• acpiexcep.h The ACPI_STATUS exception codes
• acpiosd.h The prototypes for all of the Osd* interfaces
• acpisubsys.h The prototypes for all of the Acpi* interfaces
• acpitypes.h Common data types used across all interfaces

Customization to the Target Environment

The use of header files that are external to the ACPI subsystem is confined to a single header file
named environment.h. These external include files consist of several of the standard C library
headers:

• stdio.h
• stdlib.h
• stdarg.h
• string.h

When generating the OSI component from source, the environment.h header may be modified if
the filenames above are not appropriate for generation on the target system. For example, some
environments use a different set of header files for the kernel-level C library versus the user-level
C library. Use of C library routines within the OSI component has been kept to a minimum in
order to enhance portability and to ensure that the OSI will run as a kernel-level component in
most operating systems.

ACPI Subsystem Interface Parameters

ACPI Names and Pathnames
As defined in the ACPI Specification, all ACPI object names (the names for all ACPI objects
such as control methods, regions, buffers, packages, etc.) are exactly four ASCII characters long.
The ASL compiler automatically pads names out to four characters if an input name in the ASL
source is shorter. (The padding character is the underscore.) Since all ACPI names are always of a
fixed length, they can be stored in a single 32-bit integer to simplify their use.

Pathnames are null-terminated ASCII strings that reference named objects in the ACPI
namespace. A pathname can be composed of multiple 4-character ACPI names separated by a

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-21

period. In addition, two special characters are defined. The backslash appearing at the start of a
pathname indicates to begin the search at the root of the namespace. A carat in the pathname
directs the search to traverse upwards in the namespace by one level. The ACPI namespace is
defined in the ACPI specification. The ACPI CA subsystem honors all of the naming conventions
that are defined in the ACPI specification.

Frequently in this document, pathnames are referred to as “fully qualified pathname” or “absolute
pathname” or “relative pathname”. A pathname is fully qualified if it begins with the backslash
character (‘\’) since it defines the complete path to an object from the root of the namespace. All
other pathnames are relative since they specify a path to an object from somewhere in the
namespace besides the root.

The ACPI specification defines special search rules for single segment (4-character) or standalone
names. These rules are intended to apply to the execution of AML control methods that reference
named ACPI objects. The ACPI CA OSI component implements these rules fully for the
execution of control methods. It does not implement the so-called “parent tree” search rules for
the external interfaces in order to avoid object reference ambiguities.

Pointers
Many of the interfaces defined here pass pointers as parameters. It is the responsibility of the
caller to ensure that all pointers passed to the ACPI CA subsystem are valid and addressable. The
interfaces only verify that pointers are non-NULL. If a pointer is any value other than NULL, it
will be assumed to be a valid pointer and will be used as such.

Buffers
It is the responsibility of the caller to ensure that all input and output buffers supplied to the OSI
component are at least as long as the length specified in the ACPI_BUFFER structure, readable,
and writable in the case of output buffers. The OSI does not perform addressability checking on
buffer pointers, nor does it perform range validity checking on the buffers themselves. In the
ACPI Component Architecture, it is the responsibility of the OS-dependent component to validate
all buffers passed to it by application code, create aliases if necessary to address buffers, and
ensure that all buffers that it creates locally are valid. In other words, the OS-independent
component trusts the OS-dependent component to validate all buffers.

ACPI Subsystem Data Types

ACPI_STRING–ASCII String
The ACPI_STRING data type is a conventional “char *” null-terminated ASCII string. It is used
whenever a full ACPI pathname or other variable-length string is required. This data type was
defined to strongly differentiate it from the ACPI_NAME data type.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-22 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

ACPI_BUFFER–Input and Output Memory Buffers
Many of the ACPI CAinterfaces require buffers to be passed into them and/or buffers to be
returned from them. A common structure is used for all input and output buffers across the
interfaces. The buffer structure below is used for both input and output buffers. The OSI
component never allocates memory for return buffers by design—this allows the caller complete
flexibility in where and how memory is allocated. This is especially important in kernel level
code.

typedef struct
{
 UINT32 Length; // Length in bytes of the buffer;
 void *Pointer; // pointer to buffer

} ACPI_BUFFER;

Input Buffer

An input buffer is defined to be a buffer that is filled with data by the user (caller) before it is
passed in as a parameter to one of the ACPI interfaces. When passing an input buffer to one of the
OSI interfaces, the user creates an ACPI_BUFFER structure and initializes it with a pointer to the
actual buffer and the length of the valid data in the buffer. Since the memory for the actual
ACPI_BUFFER structure is small, it will typically be dynamically allocated on the CPU stack.
For example, a user may allocate a 4K buffer for common storage. The buffer may be reused
many times with data of various lengths. Each time the number of bytes of significant data
contained in the buffer is entered in the Length field of the ACPI_BUFFER structure before an
OSI interface is called.

Output Buffer

An output buffer is defined to be a buffer that is filled with data by an ACPI interface before it is
returned to the caller. When the ACPI_BUFFER structure is used as an output buffer the caller
must always initialize the structure by placing a value in the Length field that indicates the
maximum size of the buffer that is pointed to by the Pointer field. The length is used by the ACPI
interface to ensure that there is sufficient user provided space for the return value.

If the buffer that is passed in by the caller is too small, the ACPI interfaces that require output
buffers will indicate the failure by returning the error code AE_BUFFER_OVERFLOW. The
interfaces will never attempt to put more data into the caller’s buffer than is specified by the
Length field of the ACPI_BUFFER structure. The caller may recover from this failure by
examining the Length field of the ACPI_BUFFER structure. The interface will place the required
length in this field in the event that the buffer was too small.

During normal operation, the ACPI interface will copy data into the buffer. It will indicate to the
caller the length of data in the buffer by setting the Length field of the ACPI_BUFFER to the
actual number of bytes placed in the buffer.

Therefore, the Length field is both an input and output parameter. On input, it indicates the size of
the buffer. On output, it either indicates the actual amount of data that was placed in the buffer (if
the buffer was large enough), or it indicates the buffer size that is required (if the buffer was too
small) and the exception is set to AE_BUFFER_OVERFLOW.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-23

ACPI_HANDLE–Object Handle
References to ACPI objects managed by the OSI component are made via the ACPI_HANDLE
data type. A handle to an object is obtained by creating an attachment to the object via the
AcpiPathnameToHandle or AcpiNameToHandle primitives. The concept is similar to opening a
file and receiving a connection–after the pathname has been resolved to an object handle, no
additional internal searching is performed whenever additional operations are needed on the
object.

References to object scopes also use the ACPI_HANDLE type. This allows objects and scopes to
be used interchangeably as parameters to Acpi interfaces. In fact, a scope handle is actually a
handle to the first object within the scope.

Predefined Handles

One predefined handle is provided in order to simplify access to the ACPI namespace:

• ACPI_ROOT_OBJECT: A handle to the root object of the namespace. All objects
contained within the root scope are children of the root object.

ACPI_OBJECT_TYPE–Object Type Codes
Each ACPI object that is managed by the ACPI subsystem has a type associated with it. The valid
ACPI object types are defined as follows:

ACPI_TYPE_Any

ACPI_TYPE_Number

ACPI_TYPE_String

ACPI_TYPE_Buffer

ACPI_TYPE_Package

ACPI_TYPE_FieldUnit

ACPI_TYPE_Device

ACPI_TYPE_Event

ACPI_TYPE_Method

ACPI_TYPE_Mutex

ACPI_TYPE_Region

ACPI_TYPE_Power

ACPI_TYPE_Processor

ACPI_TYPE_Thermal

ACPI_TYPE_Alias

ACPI_OBJECT_TYPE_MAX

ACPI_OBJECT–Method Parameters and Return Objects
The general purpose ACPI_OBJECT is used to pass parameters to control methods, and to
receive results from the evaluation of namespace objects. The point of this data structure is to
provide a common object that can be used to contain multiple ACPI data types.

When passing parameters to a control method, each parameter is contained in an ACPI_OBJECT.
All of the parameters are then grouped together in an ACPI_OBJECT_LIST.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-24 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

When receiving a result from the evaluation of a namespace object, an ACPI_OBJECT is
returned in an ACPI_BUFFER structure. This allows variable length objects such as ACPI
Packages to be returned in the buffer. The first item in the buffer is always the base
ACPI_OBJECT.

typedef union AcpiObj
{
 UINT32 Type; // An ACPI_OBJECT_TYPE

 struct /* ACPI_TYPE_Number */
 {
 UINT32 Type;
 UINT32 Value; // The actual number
 } Number;

 struct /* ACPI_TYPE_String */
 {
 UINT32 Type;
 UINT32 Length; // Length of string, without null
 UINT8 *Pointer; // points to the string value
 } String;

 struct /* ACPI_TYPE_Buffer */
 {
 UINT32 Type;
 UINT32 Length; // # of bytes in buffer
 UINT8 *Pointer; // points to the buffer
 } Buffer;

 struct /* ACPI_TYPE_Package */
 {
 UINT32 Type;
 UINT32 Count; // # of elements in package
 union AcpiObj *Elements; // Pointer to an array of Objects
 } Package;

} ACPI_OBJECT, *PACPI_OBJECT;

ACPI_OBJECT_LIST–List of Objects
This object is used to pass parameters to control methods via the AcpiEvaluateMethod interface.
The Count is the number of ACPI objects pointed to by the Pointer field. In other words, the
Pointer field must point to an array that contains Count ACPI objects.

typedef struct AcpiObjList
{
 UINT32 Count;
 ACPI_OBJECT *Pointer;

} ACPI_OBJECT_LIST, *PACPI_OBJECT_LIST;

ACPI_EVENT_TYPE–Fixed Event Type Codes
The ACPI fixed events are defined in the ACPI specification. The event codes below are used to
install handlers for the individual events.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-25

EVENT_PMTIMER // Power Management Timer rollover
EVENT_NOT_USED // Reserved
EVENT_GLOBAL // Global Lock released
EVENT_POWER_BUTTON // Power Button (pressed)
EVENT_SLEEP_BUTTON // Sleep Button (pressed)
EVENT_RTC // Real Time Clock alarm
EVENT_GENERAL // General Event
ACPI_EVENT_MAX

ACPI_TABLE_TYPE–ACPI Table Type Codes
The following ACPI tables are supported by the ACPI CA subsystem. The table type codes below
are used to load, unload, or get a copy of the individual tables.

TABLE_RSDP // Root System Description Pointer
TABLE_APIC // Multiple APIC Description Table
TABLE_DSDT // Differentiated System Description Table
TABLE_FACP // Fixed ACPI Description Table
TABLE_FACS // Firmware ACPI Control Structure
TABLE_PSDT // Persistent System Description Table
TABLE_RSDT // Root System Description Table
TABLE_SSDT // Secondary System Description Table
TABLE_SBDT // Smart Battery Description Table
ACPI_TABLE_MAX

ACPI_TABLE_HEADER–Common ACPI Table Header
typedef struct /* ACPI common table header */
{
 char Signature [4]; /* Identifies type of table
*/
 UINT32 Length; /* Length of table, in
bytes,
 * including header */
 UINT8 Revision; /* Specification minor
version # */
 UINT8 Checksum; /* To make sum of entire
table == 0 */
 char OemId [6]; /* OEM identification */
 char OemTableId [8]; /* OEM table identification
*/
 UINT32 OemRevision; /* OEM revision number */
 char AslCompilerId [4]; /* ASL compiler vendor ID */
 UINT32 AslCompilerRevision;/* ASL compiler revision
number */

} ACPI_TABLE_HEADER;

ACPI_STATUS–Interface Exception Return Codes
Each of the external ACPI interfaces return an exception code of type ACPI_STATUS as the
function return value, as shown in the example below:

ACPI_STATUS Status;

Status = AcpiLoadNamespace ();
if (Status != AE_OK)
{

// Exception handling code here
}

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-26 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

ACPI Resource Data Types

The ACPI resource data types are used by the ACPI CA resource interfaces.

PCI IRQ Routing Tables
The PCI IRQ routing tables are retrieved by using the AcpiGetIrqRoutingTable API. This API
returns the routing table in the ACPI_BUFFER provided by the caller. Upon return, the Length
field of the ACPI_BUFFER will indicate the amount of the buffer used to store the PCI IRQ
routing tables. If AE_BUFFER_OVERFLOW is the returned status, the Length indicates the size
of the buffer needed to contain the routing table.

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer contains a series
of PCI_ROUTING_TABLE entries, each of which contains both a Length member and a Data
member. The Data member is a PRT_ENTRY. The Length member specifies the length of the
PRT_ENTRY and can be used to walk the PCI_ROUTING_TABLE entries. By incrementing a
buffer walking pointer by Length bytes, the pointer will reference each succeeding table element.
The final PCI_ROUTING_TABLE entry will contain no Data and have a Length member of zero.

Each PRT_ENTRY contains the Address, Pin, Source and Source Index information as described
in Chapter 6 of the ACPI Specification. While all structure members are UINT32 types, the valid
portion of both the Pin and SourceIndex members are only UINT8 wide. Although the Source
member is defined as UINT8 Source[1], it can be de-referenced as a null-terminated string.

typedef struct /* a single IRQ table entry */
{
 UINT32 Address; /* PCI Address of device */
 UINT32 Pin; /* PCI Pin (0=INTA, 1=INTB, 2=INTC, 3=INTD # */
 UINT32 SourceIndex; /* index of resource of allocating device */
 UINT8 Source[1]; /* Null terminated Name of device that allocates
*/
 /* this interrupt */
} PRT_ENTRY;

typedef struct /* An IRQ table entry packed in the return buffer
*/
{
 UINT32 Length; /* Length of this PRT_ENTRY */
 PRT_ENTRY Data; /* The PRT Entry data */
} PCI_ROUTING_TABLE;

Device Resources
Device resources are returned by executing the _CRS and _PRS control methods by using the
AcpiGetCurrentResources and AcpiGetPossibleResources APIs. Device resources are needed to
properly execute the _SRS control method using the AcpiSetCurrentResources API.

These API’s require an ACPI_BUFFER parameter. If the Length member of the ACPI_BUFFER
is set to zero then the AcpiGet* API’s will return an ACPI_STATUS of
AE_BUFFER_OVERFLOW with Length set to the size buffer needed to contain the resource
descriptors. If the Length member is non-zero and Pointer in non-NULL, it is assumed that
Pointer points to a memory buffer of at least Length size. Upon return, the Length member will
indicate the amount of the buffer used to store the resource descriptors.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-27

RESOURCE_TYPE – Resource data types

The following resource types are supported by the ACPI CA subsystem. The resource types that
follow are use in the resource definitions used in the resource handling APIs:
AcpiGetCurrentResources, AcpiGetPossibleResources and AcpiSetCurrentResources.
1. Irq
2. Dma
3. StartDependentFunctions
4. EndDependentFunctions
5. Io
6. FixedIo
7. VendorSpecific
8. EndTag
9. Memory24
10. Memory32
11. FixedMemory32
12. Address16
13. Address32
14. ExtendedIrq

typedef union /* union of all resources */
{
 IRQ_RESOURCE Irq;
 DMA_RESOURCE Dma;
 START_DEPENDENT_FUNCTIONS_RESOURCE StartDependentFunctions;
 IO_RESOURCE Io;
 FIXED_IO_RESOURCE FixedIo;
 VENDOR_RESOURCE VendorSpecific;
 MEMORY24_RESOURCE Memory24;
 MEMORY32_RESOURCE Memory32;
 FIXED_MEMORY32_RESOURCE FixedMemory32;
 ADDRESS16_RESOURCE Address16;
 ADDRESS32_RESOURCE Address32;
 EXTENDED_IRQ_RESOURCE ExtendedIrq;
} RESOURCE_DATA;

typedef struct _resource_tag
{
 RESOURCE_TYPE Id;
 UINT32 Length;
 RESOURCE_DATA Data;
} RESOURCE;

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer is filled with a
series of RESOURCE entries, each of which begins with an Id that indicates the type of resource
descriptor, a Length member and a Data member that is a RESOURCE_DATA union. The
RESOURCE_DATA union can be any of fourteen different types of resource descriptors. The
Length member will allow the caller to walk the RESOURCE entries. By incrementing a buffer
walking pointer by Length bytes, the pointer will reference each succeeding table element. The
final element in the list of RESOURCE entries will have an Id of EndTag. An EndTag entry
contains no additional data.

When walking the RESOURCE entries, the Id member determines how to interpret the structure.
For example, if the Id member evaluates to StartDependentFunctions, then the Data member is
two 32-bit values, a CompatibilityPriority value and a PerformanceRobustness value. These
values are interpreted using the constant definitions, which are found in acpitypes.h,
GOOD_CONFIGURATION, ACCEPTABLE_CONFIGURATION or

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-28 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

SUB_OPTIMAL_CONFIGURATION. The interpretation of these constant definitions is
discussed in the Start Dependent Functions section of the ACPI specification.

For another, more complex example, let us consider a RESOURCE entry with an Id member that
evaluates to Address32, then the Data member is a ADDRESS32_RESOURCE structure. The
ADDRESS32_RESOURCE structure contains fourteen members that map to the data discussed
in the DWORD Address Space Descriptor section of the ACPI specification. The
Data.Address32.ResourceType member is interpreted using the constant definitions
MEMORY_RANGE, IO_RANGE or BUS_NUMBER_RANGE. This value also effects the
interpretation of the Data.Address32. Attribute structure because it contains type specific
information.

The General Flags discussed in the ACPI specification are interpreted and given separate
members within the ADDRESS32_RESOURCE structure. Each of the bits in the General Flags
that describe whether the maximum and minimum addresses is fixed or not, whether the address
is subtractively or positively decoded and whether the resource simply consumes or both
produces and consumes a resource are represented by the members MaxAddressFixed,
MinAddressFixed, Decode and ProducerConsumer respectively.

The Attribute member is interpreted based upon the ResourceType member. For example, if the
ResourceType is MEMORY_RANGE, then the Attribute member contains two 16-bit values, a
Data.Address32.Attribute.Memory.CacheAttribute value and a ReadWriteAttribute value.

The Data.Address32.Granularity, MinAddressRange, MaxAddressRange,
AddressTranslationOffset and AddressLength members are simply interpreted as UINT32
numbers.

The optional Data.Address32.ResourceSourceIndex is valid only if the
ResourceSourceStringLength is non-zero. Although the ResourceSource member is defined as
UINT8 ResourceSource[1], it can be de-referenced as a null-terminated string whose length is
ResourceSourceStringLength.

Exception Codes

A common and consistent set of return codes is used throughout the ACPI subsystem. For
example, all of the public ACPI interfaces return the exception AE_BAD_PARAMETER when
an invalid parameter is detected.

The exception codes are contained in the public acpiexcep.h file.

The entire list of available exception codes is given below, along with a generic description of
each code. See the description of each public primitive for a list of possible exceptions, along
with specific reason(s) for each exception.

AE_OK // No error
AE_PENDING // Internal use only
AE_AML_ERROR // AML parsing error
AE_RETURN_VALUE // Internal use only
AE_ERROR // Unspecified error
AE_NO_ACPI_TABLES // ACPI tables could not be found
AE_NO_NAMESPACE // A namespace has not been loaded
AE_NO_MEMORY // Insufficient dynamic memory
AE_BAD_HEADER // Invalid field in an ACPI table header

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-29

AE_BAD_CHECKSUM // An ACPI table checksum is not correct
AE_BAD_PARAMETER // A parameter is out of range or invalid
AE_BAD_CHARACTER // An invalid character was found in a name
AE_NOT_FOUND // The name was not found in the namespace
AE_NOT_EXIST // A required entity does not exist
AE_EXIST // An entity already exists
AE_TYPE // The object type is incorrect
AE_NULL_ENTRY // The requested object does not exist
AE_BUFFER_OVERFLOW // The buffer provided is too small
AE_STACK_OVERFLOW // An internal stack overflowed
AE_STACK_UNDERFLOW // An internal stack underflowed
AE_NOT_IMPLEMENTED // The feature is not implemented
AE_VERSION_MISMATCH // An incompatible version was detected
AE_BAD_SIGNATURE // An ACPI table has an unrecognized signature
AE_SUPPORT // The feature is not supported
AE_SHARE // There was a sharing violation
AE_LIMIT // A predefined limit was exceeded
AE_TIME // A time limit or timeout expired
AE_TERMINATE // Request to terminate the current operation
AE_DEPTH // Maximum search depth has been reached
AE_UNKNOWN_STATUS // An unknown status code was encountered

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-30 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

OS-Independent Component -
External Interface Definition
This section contains documentation for the specific interfaces exported by the OS-Independent
component to provide ACPI services to the OSD. The interfaces are broken into groups based
upon their functionality. These groups are closely related to the internal modules of the OSI
described earlier in this document. These interfaces are intended for use by the OSD only. The
host OS does not call these interfaces directly. All interfaces to the OS-independent component
are prefixed by the letters Acpi.

• Global Initialization, Shutdown, and Status

• AcpiInitialize

Initialize the OS-independent component of the ACPI Subsystem.

ACPI_STATUS
AcpiInitialize (void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The OSI was successfully initialized.
AE_ERROR The system is not capable of supporting ACPI mode.
AE_NO_MEMORY Insufficient dynamic memory to complete the ACPI

initialization.

Functional Description:

This function initializes the OS-independent part of the ACPI subsystem. It must be called once
before any of the other Acpi* interfaces are called.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-31

• AcpiTerminate

Shutdown the OS-independent component of the ACPI Subsystem.

ACPI_STATUS
AcpiTerminate (void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The OSI component was successfully shutdown.
AE_ERROR Execution error

Functional Description:

This function performs a shutdown of the OS-independent portion of the ACPI subsystem. The
namespace tables are unloaded, and all resources are freed to the host operating system. This
function should be called prior to unloading the ACPI subsystem. In more detail, the terminate
function performs the following:

• Free all memory associated with the ACPI tables (either allocated or mapped memory).
• Free all internal objects associated with the namespace.
• Free all internal namespace tables.
• Free all OS resources associated with mutual exclusion.

• AcpiGetSystemInfo

Get global ACPI-related system information.

ACPI_STATUS
AcpiGetSystemInfo (

ACPI_BUFFER *OutBuffer)

PARAMETERS

OutBuffer A pointer to a location where the system information is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-32 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

EXCEPTIONS

AE_OK The system information list was successfully returned.
AE_BAD_PARAMETER At least one of the following is true:

• The OutBuffer pointer is NULL.
• The Pointer field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the system information. Upon return, the Length
field contains the minimum required buffer length.

Functional Description:

This function obtains information about the current state of the ACPI system. It will return system
information in the OutBuffer structure. Upon completion the Length field of OutBuffer will
indicate the number of bytes copied into the Pointer field of the OutBuffer buffer. This routine
will never return a partial resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

The structure that is returned in OutBuffer is defined as follows:
typedef struct _AcpiSysInfo
{
 UINT32 Flags;
 UINT32 TimerResolution;
 UINT32 Reserved1;
 UINT32 Reserved2;
 UINT32 DebugLevel;
 UINT32 DebugLayer;

} ACPI_SYSTEM_INFO;

Where:

Flags Static information about the system:
SYS_MODE_ACPI Acpi mode supported on this system.
SYS_MODE_LEGACY Legacy mode supported.

TimerResolution Resolution of the ACPI Power Management Timer. Either 24 or 32 bits
of resolution.

Future versions of this document may add and consolidate other ACPI info such as: Timer
resolution, Acpi and legacy mode capabilities, supported sleep states, current mode, etc.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-33

• AcpiFormatException

Return the ASCII name of an ACPI exception code.

ACPI_STATUS
AcpiFormatException (

ACPI_STATUS Exception
ACPI_BUFFER *OutBuffer)

PARAMETERS

Exception The ACPI exception code to be translated.
OutBuffer A pointer to a location where the exception code name is to be

returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The exception code name was was successfully returned.
AE_BAD_PARAMETER At least one of the following is true:

• The OutBuffer pointer is NULL.
• The Pointer field of OutBuffer is NULL.
• The Exception is not valid.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the exception name. Upon return, the Length
field contains the minimum required buffer length.

Functional Description:

This function converts an ACPI exception code into a human-readable string. It will return the
exception name string in the OutBuffer structure. Upon completion the Length field of OutBuffer
will indicate the number of bytes copied into the Pointer field of the OutBuffer buffer. This
routine will never return a partial string.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-34 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• ACPI Table Manipulation

• AcpiLoadFirmwareTables

Load all available ACPI tables from the firmware.

ACPI_STATUS
AcpiLoadFirmwareTables (

void)

PARAMETERS

None.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully loaded and a handle returned.
AE_BAD_CHECKSUM The computed table checksum does not match the checksum

in the table.
AE_BAD_HEADER The table header is invalid or is not a valid type.
AE_NO_ACPI_TABLES The ACPI tables (RSDT, DSDT, FACP, etc.) could not be

found in physical memory.
AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function loads all available ACPI tables that are posted by the firmware. The Root System
Description Pointer (RSDP) is found in low physical memory (within the first megabyte), and the
remaining tables are found via pointers contained in the Root System Description Table (RSDT).

If the operation fails an appropriate status will be returned and the value of OutTableHandle is
undefined.

• AcpiLoadTable

Load an ACPI table from a buffer.

ACPI_STATUS
AcpiLoadTable (

ACPI_TABLE_HEADER *Table)

PARAMETERS

Table A pointer to a buffer containing the entire table to be loaded.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-35

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully loaded and a handle returned.
AE_BAD_CHECKSUM The computed table checksum does not match the checksum

in the table.
AE_BAD_HEADER The table header is invalid.
AE_BAD_PARAMETER At least one of the following is true:

• The Table pointer is NULL.
AE_BAD_SIGNATURE The signature field in the table header is not one of the

supported table types.
AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function is loads a single ACPI table from the caller’s buffer. The buffer must contain an
entire ACPI Table including a valid header. The header fields are verified, and the call will fail if
it is determined that the table is invalid.

The table type (DSDT, FACS, etc.) is determined from the signature in the table header. See the
ACPI_TABLE_TYPE data type for the supported table types.

Any previously loaded table of the same table type is automatically unloaded before the new table
is installed.

If the call fails an appropriate status will be returned and the value of OutTableHandle is
undefined.

• AcpiUnloadTable

Unload a previously loaded ACPI table.

ACPI_STATUS
AcpiUnloadTable (

ACPI_TABLE_TYPE Type)

PARAMETERS

Type The type of the table to be unloaded. This must be a table
loaded by either the AcpiLoadTable or the AcpiLoadFirmware
functions.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully unloaded.
AE_BAD_PARAMETER The Type is invalid.
AE_NOT_EXIST There is no table of this type currently loaded.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-36 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Functional Description:

This function unloads a previously loaded table. The table may have been loaded from the
firmware or from a call to the AcpiLoadTable interface. For table types that allow multiple table
(SSDT, PSDT), all tables of the given type are unloaded.

• AcpiGetTableHeader

Get the header portion of a loaded ACPI table.

ACPI_STATUS
AcpiGetTableHeader (

ACPI_TABLE_TYPE TableType,
UINT32 Instance
ACPI_TABLE_HEADER *OutTableHeader)

PARAMETERS

TableType One of the defined ACPI table types.
Instance For table types that support multiple tables, the instance of the

table to be returned. For table types that support only a single
table, this parameter must be set to one.

OutTableHeader A pointer to a location where the table header is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table header was successfully located and returned.
AE_BAD_PARAMETER At least one of the following is true:

• The TableType is invalid.
• The OutTableHeader pointer is NULL.
• The table type only supports single tables, and the

Instance is not one.
AE_NOT_EXIST There is no table of this type currently loaded, or the table of

the specified Instance is not loaded.
AE_TYPE The table Type is not supported (RSDP).

Functional Description:

This function obtains the header of an installed ACPI table. The header contains a length field
that can be used to determine the size of the buffer needed to contain the entire table. This
function is not valid for the RSDP table since it does not have a standard header and is fixed
length.

For table types that support more than one table, the Instance parameter is used to specify which
table header of the given type should be returned. For table types that only support single tables,
the Instance parameter must be set to one.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-37

If the operation fails an appropriate status will be returned and the contents of OutTableHeader
are undefined.

• AcpiGetTable

Get a loaded ACPI table.

ACPI_STATUS
AcpiGetTable (

ACPI_TABLE_TYPE TableType,
UINT32 Instance
ACPI_BUFFER *OutBuffer)

PARAMETERS

TableType One of the defined ACPI table types.
Instance For table types that support multiple tables, the instance of the

table to be returned. For table types that support only a single
table, this parameter must be set to one.

OutBuffer A pointer to location where the table is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully located and returned.
AE_BAD_PARAMETER At least one of the following is true:

• The TableType is invalid.
• The OutBuffer pointer is NULL.
• The Pointer field of OutBuffer is NULL.
• The table type only supports single tables, and the

Instance is not one.
AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too

small to hold the table. Upon return, the Length field contains
the minimum required buffer length.

AE_NOT_EXIST There is no table of this type currently loaded, or the table of
the specified Instance is not loaded.

Functional Description:

This function obtains an installed ACPI table. The caller supplies an OutBuffer large enough to
contain the entire ACPI table. The caller should call the AcpiGetTableHeader function first to
determine the buffer size needed. Upon completion the Length field of OutBuffer will indicate the
number of bytes copied into the Pointer field of the OutBuffer buffer. This table will be a
complete table including the header.

For table types that support more than one table, the Instance parameter is used to specify which
table of the given type should be returned. For table types that only support single tables, the
Instance parameter must be set to one.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-38 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

If the operation fails an appropriate status will be returned and the contents of OutBuffer are
undefined.

• ACPI Namespace Access

• AcpiLoadNamespace

Load the internal ACPI namespace.

ACPI_STATUS
AcpiLoadNamespace (

void)

PARAMETERS

None.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and initialized.
AE_NO_MEMORY Insufficient memory to build the internal namespace.

Functional Description:

This function loads the internal ACPI namespace. The namespace is loaded from the DSDT.

• AcpiEvaluateObject

Evaluate an ACPI namespace object and return the result.

ACPI_STATUS
AcpiEvaluateObject (

ACPI_HANDLE Object,
ACPI_STRING *Pathname,
ACPI_OBJECT_LIST *MethodParams,
ACPI_BUFFER *ReturnBuffer)

PARAMETERS

Object One of the following:
• A handle to the object to be evaluated.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-39

• A handle to a parent object that is a prefix to the
pathname.

• A NULL handle if the pathname is fully qualified.
Pathname Pathname of namespace object to evaluate. May be either an

absolute path or a path relative to the Object.
MethodParams If the object is a control method, this is a pointer to a list of

parameters to pass to the method. This pointer may be NULL if
no parameters are being passed to the method or if the object
is not a method.

ReturnBuffer A pointer to a location where the return value of the object
evaluation (if any) is placed. If this pointer is NULL, no value
is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object was successfully evaluated.
AE_AML_ERROR An error occurred during the parsing of the AML code.
AE_BAD_CHARACTER An invalid character was found in the Pathname parameter.
AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly

four characters long.
AE_BAD_PARAMETER At least one of the following is true:

• Both the Object and Pathname parameters are NULL.
• The Object handle is NULL, but the Pathname is not

absolute.
• The Pathname is relative but the Object is invalid.
• The Pointer field of the ReturnBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of the ReturnBuffer is too small to hold the
actual returned object. Upon return, the Length field contains
the minimum required buffer length.

AE_ERROR An unspecified error occurred.
AE_NO_MEMORY Insufficient dynamic memory to complete the request.
AE_NOT_FOUND The object referenced by the combination of the Object and

Pathname was not found within the namespace.
AE_STACK_OVERFLOW An internal stack overflow occurred because of an error in the

AML, or because control methods or objects are nested too
deep.

AE_STACK_UNDERFLOW An internal stack underflow occurred during evaluation.
AE_TYPE The object is of a type that cannot be evaluated.

Functional Description:

This function locates and evaluates objects in the namespace. This interface has two modes of
operation, depending on the type of object that is being evaluated:

1) If the target object is a control method, the method is executed and the result (if any) is
returned.

2) If the target is not a control method, the current “value” of that object is returned. The type of
the returned value corresponds to the type of the object; for example, the object (and the
corresponding returned result) may be a number, a string, or a buffer.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-40 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Specifying a Target Object: The target object may be any valid named ACPI object. To specify
the object, a valid Object, a valid Pathname, or both may be provided. However, at least one of
these parameters must be valid.

If the Object is NULL, the Pathname must be a fully qualified (absolute) namespace path.

If the Object is non-NULL, the Pathname may be either:

1) A path relative to the Object handle (a relative pathname as defined in the ACPI
specification)

2) An absolute pathname. In this case, the Object handle is ignored.

Parameters to Control Methods: If the object to be evaluated is a control method, the caller can
supply zero or more parameters that will be passed to the method when it is executed. The
MethodParams parameter is a pointer to an ACPI_OBJECT_LIST that in turn is a counted array
of ACPI_OBJECTs. If MethodParams is NULL, then no parameters are passed to the control
method. If the Count field of MethodParams is zero, then the entire parameter is treated exactly
as if it is a NULL pointer. If the object to be evaluated is not a control method, the MethodParams
field is ignored.

Receiving Evaluation Results: The ReturnObject parameter optionally receives the results of the
object evaluation. If this parameter is NULL, the evaluation results are not returned and are
discarded. If there is no result from the evaluation of the object and no error occurred, the Length
field of the ReturnObject parameter is set to zero.

Unsupported Object Types: The object types that cannot be evaluated are the following:
ACPI_TYPE_Device.

EXAMPLES

Example 1: Executing the control method with an absolute path, two input parameters, with no
return value expected:

ACPI_OBJECT_LIST Params;
ACPI_OBJECT Obj[2];

/* Initialize the parameter list */

Params.Count = 2;
Params.Pointer = &Obj;

/* Initialize the parameter objects */

Obj[0].Type = ACPI_TYPE_String;
Obj[0].String.Pointer = “ACPI User”;

Obj[1].Type = ACPI_TYPE_Number;
Obj[1].Number.Value = 0x0E00200A;

/* Execute the control method */

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._TWO” , &Params, NULL);

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-41

Example 2: Before executing a control method that returns a result, we must declare and initialize
an ACPI_BUFFER to contain the return value:

ACPI_BUFFER Results;
ACPI_OBJECT Obj;

/* Initialize the return buffer structure */

Results.Length = sizeof (Obj);
Results.Pointer = &Obj;

The three examples that follow are functionally identical.

Example 3: Executing a control method using an absolute path. In this example, there are no input
parameters, but a return value is expected.

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._STA” , NULL, &Results);

Example 4: Executing a control method using a relative path. A return value is expected.
Status = AcpiPathnameToHandle (”_SB.PCI0”, &Object)
Status = AcpiEvaluateObject (Object, ”_STA” , NULL, &Results);

Example 5: Executing a control method using a relative path. A return value is expected.
Status = AcpiPathnameToHandle (”_SB.PCI0._STA”, &Object)
Status = AcpiEvaluateObject (Object, NULL, NULL, &Results);

• AcpiGetObjectInfo

Get information about an ACPI-related device.

ACPI_STATUS
AcpiGetObjectInfo (

ACPI_HANDLE Object,
ACPI_DEVICE_INFO *OutInfo)

PARAMETERS

Object A handle to an ACPI object for which information is to be
returned.

OutInfo A pointer to a location where the device info is returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Device info was successfully returned. See the
ACPI_DEVICE_INFO structure for valid returned fields.

AE_BAD_PARAMETER At least one of the following is true:
• The Object handle is invalid.
• The OutInfo pointer is NULL.

AE_TYPE The Device handle does not refer to an object of type
ACPI_TYPE_Device.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-42 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Functional Description:

This function obtains information about an object contained within the ACPI namespace. The
information returned is a composite of static internal information and the results of evaluating the
following standard ACPI device methods and objects on behalf of the device:

Type — The ACPI object type of the object

Name — The 4-character ACPI name of the object

_HID — The hardware ID of the object.

_UID — The Unique ID of the object.
_ADR — The address of the object (bus and device specific).

_STA — The current status of the object/device.

Returned Data Format: The device information is returned in the ACPI_DEVICE_INFO structure
that is defined as follows:

typedef struct
{
 ACPI_OBJECT_TYPE Type;
 UINT32 Name;
 UINT32 Valid;
 char HardwareId [9];
 char UniqueId [9];
 UINT32 Address;
 UINT32 CurrentStatus;

} ACPI_DEVICE_INFO;

Where:

Type Is the object type number
Name The 4-character ACPI name of the object
Valid A bitfield that indicates which of the remaining fields are valid.
HardwareId The result of evaluating _HID for this object.
UniqueId The result of evaluating _UID for this object.
Address The result of evaluating _ADR for this object.
CurrentStatus The result of evaluating _STA method for this object.

The fields of the structure that are valid because the corresponding method or object has been
successfully found under the device are indicated by the values of the Valid bitfield via the
following constants:

ACPI_VALID_HID
ACPI_VALID_UID
ACPI_VALID_ADR
ACPI_VALID_STA

Each bit should be checked before the corresponding value in the structure can be considered
valid. None of the methods/objects that are used by this interface are required by the ACPI
specification. Therefore, there is no guarantee that all or even any of them are available for a
particular device. Even if none of the methods are found, the interface will return an AE_OK
status — but none of the bits set in the Valid field return structure will be set.

Both the _HID and _UID values can be of either type STRING or NUMBER in the ACPI tables.
In order to provide a consistent data type in the external interface, these values are always

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-43

returned as NULL terminated strings, regardless of the original data type in the source ACPI
table. A data type conversion is performed if necessary.

• AcpiGetNextObject

Get a handle to the next child ACPI object of a parent object.

ACPI_STATUS
AcpiGetNextObject (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE Parent,
ACPI_HANDLE Child,
ACPI_HANDLE *OutHandle)

PARAMETERS

Type The desired type of the next object.
Parent A handle to a parent object to be searched for the next child

object.
Child A handle to a child object. The next child object of the parent

object that matches the Type will be returned. Use the value of
NULL to get the first child of the parent.

OutHandle A pointer to a location where a handle to the next child object
is to be returned. If this pointer is NULL, the child object
handle is not returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The next object was successfully found and returned.
AE_BAD_PARAMETER At least one of the following is true:

• The Parent handle is invalid.
• The Child handle is invalid.
• The Type parameter refers to an invalid type

AE_NOT_FOUND The child object parameter is the last object of the given type
within the parent—a next child object was not found. If Child
is NULL, this exception means that the parent object has no
children.

Functional Description:

This function obtains the next child object of the parent object that is of type Type. Both the
Parent and the Child parameters are optional. The behavior for the various combinations of
Parent and Child is as follows:

1. If the Child is non-NULL, it is used as the starting point (the current object) for the search.

2. If the Child is NULL and the Parent is non-NULL, the search is performed starting at the
beginning of the scope.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-44 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3. If both the Parent and the Child parameters are NULL, the search begins at the start of the
namespace (the search begins at the Root Object).

If the search fails, an appropriate status will be returned and the value of OutHandle is undefined.

This interface is appropriate for use within a loop that looks up a group of objects within the
internal namespace. However, the AcpiWalkNamespace primitive implements such a loop and
may be simpler to use in your application; see the description of this interface for additional
details.

• AcpiGetParent

Get a handle to the parent object of an ACPI object.

ACPI_STATUS
AcpiGetParent (

ACPI_HANDLE Child,
ACPI_HANDLE *OutParent)

PARAMETERS

Child A handle to an object whose parent is to be returned.
OutParent A pointer to a location where the handle to the parent object is

to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The parent object was successfully found and returned.
AE_BAD_PARAMETER At least one of the following is true:

• The Child handle is invalid.
• The OutParent pointer is NULL.

AE_NULL_ENTRY The referenced object has no parent. (Entries at the root level
do not have a parent object.)

Functional Description:

This function returns a handle to the parent of the Child object. If an error occurs, a status code is
returned and the value of OutParent is undefined.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-45

• AcpiGetType

Get the type of an ACPI object.

ACPI_STATUS
AcpiGetType (

ACPI_HANDLE Object,
ACPI_OBJECT_TYPE *OutType)

PARAMETERS

Object A handle to an object whose type is to be returned.
OutType A pointer to a location where the object type is to be returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object type was successfully returned.
AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.
• The OutType pointer is NULL.

Functional Description:

This function obtains the type of an ACPI namespace object. See the definition of the
ACPI_OBJECT_TYPE for a comprehensive listing of the available object types.

• AcpiGetHandle

Get the object handle associated with an ACPI name.

ACPI_STATUS
AcpiGetHandle (

ACPI_HANDLE Parent,
ACPI_STRING *Pathname,
ACPI_HANDLE *OutHandle)

PARAMETERS

Parent A handle to the parent of the object specified by Pathame. In
other words, the Pathame is relative to the Parent. If Parent is
NULL, the pathname must be a fully qualified pathname.

Pathname A name or pathname to an ACPI object (a NULL terminated
ASCII string). The string can be either a single segment ACPI
name or a multiple segment ACPI pathname (with path
separators).

OutHandle A pointer to a location where a handle to the object is to be
returned.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-46 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The pathname was successfully associated with an object and
the handle was returned.

AE_BAD_CHARACTER An invalid character was found in the pathname.
AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly

four characters long.
AE_BAD_PARAMETER At least one of the following is true:

• The Pathname pointer is NULL.
• The Pathname does not begin with a backslash character.
• The OutHandle pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.
AE_NOT_FOUND One or more of the segments of the pathname refers to a non-

existent object.

Functional Description:

This function translates an ACPI pathname into an object handle. It locates the object in the
namespace via the combination of the Parent and Pathame parameters. Only the specified Parent
object will be searched for the name—this function will not perform a walk of the namespace tree
(See AcpiWalkNamespace).

The pathname is relative to the Parent. If the parent object is NULL, the Pathname must be fully
qualified (absolute), meaning that the path to the object must be a complete path from the root of
the namespace, and the pathname must begin with a backslash (‘\’).

Multiple instances of the same name under a given parent (within a given scope) are not allowed
by the ACPI specification. However, if more than one instance of a particular name were to
appear under a single parent in the ACPI DSDT, only the first one would be successfully loaded
into the internal namespace. The second attempt to load the name would collide with the first
instance of the name, and the second instance would be ignored.

If the operation fails an appropriate status will be returned and the value of OutHandle is
undefined.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-47

• AcpiGetName

Get the name of an ACPI object.

ACPI_STATUS
AcpiGetName (

ACPI_HANDLE Object,
UINT32 NameType
ACPI_BUFFER *OutNname)

PARAMETERS

Object A handle to an object whose name or pathname is to be
returned.

NameType The type of name to return, must be one of these manifest
constants:
• ACPI_FULL_PATHNAME – return a complete

pathname (from the namespace root) to the object
• ACPI_SINGLE_NAME – return a single segment ACPI

name for the object (4 characters, null terminated).
OutName A pointer to a location where the fully qualified and NULL

terminated name or pathname is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The full pathname associated with the handle was successfully
retrieved and returned.

AE_BAD_PARAMETER At least one of the following is true:
• The Parent handle is invalid.
• The Object handle is invalid.
• The OutName pointer is NULL.
• The Pointer field of OutName is NULL.

AE_BUFFER_OVERFLOW The Length field of OutName indicates that the buffer is too
small to hold the actual pathname. Upon return, the Length
field contains the minimum required buffer length.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function obtains the name that is associated with the Object parameter. The returned name
can be either a full pathname (from the root, with path segment separators) or a single segment, 4-
character ACPI name. This function and AcpiGetHandle are complementary functions, as shown
in the examples below.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-48 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

EXAMPLES

Example 1: The following operations:

Status = AcpiGetName (Handle, ACPI_FULL_PATHNAME, &OutName)
Status = AcpiGetHandle (NULL, OutName.BufferPtr, &OutHandle))

Yield this result:

Handle == OutHandle;

Example 2: If Name is a 4-character ACPI name, the following operations:

Status = AcpiGetHandle (Parent, Name, &OutHandle))
Status = AcpiGetName (OutHandle, ACPI_SINGLE_NAME, &OutName)

Yield this result:

Name == OutName.BufferPtr

• AcpiWalkNamespace

Traverse a portion of the ACPI namespace to find objects of a given type.

ACPI_STATUS
AcpiWalkNamespace (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartObject,
UINT32 MaxDepth,
WALK_CALLBACK UserFunction,
Void *UserContext)
Void **ReturnValue

PARAMETERS

Type The type of object desired.
StartObject A handle to an object where the namespace walk is to begin.

The constant ACPI_ROOT_OBJECT indicates to start the
walk at the root of the namespace (walk the entire namespace.)

MaxDepth The maximum number of levels to descend in the namespace
during the walk.

UserFunction A pointer to a user-written function that is invoked for each
matching object that is found during the walk. (See the
interface specification for the user function below.)

UserContext A value that will be passed as a parameter to the user function
each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated
early. Otherwise, NULL is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-49

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending on
the value of the return parameter.

AE_BAD_PARAMETER At least one of the following is true:
• The MaxDepth is zero.
• The UserFunction address is NULL.
• The StartObject handle is invalid.
• The Type is invalid.

Functional Description:

This function performs a modified depth-first walk of the namespace tree, starting (and ending) at
the object specified by the StartObject handle. The UserFunction is invoked whenever an object
that matches the type parameter is found. If the user function returns a non-zero value, the search
is terminated immediately and this value is returned to the caller.

The point of this procedure is to provide a generic namespace walk routine that can be called
from multiple places to provide multiple services; the user function can be tailored to each task —
whether it is a print function, a compare function, etc.

• Interface to User Callback Function

Interface to the user function that is invoked from AcpiWalkNamespace.

typedef
ACPI_STATUS (*WALK_CALLBACK) (

ACPI_HANDLE ObjHandle,
UINT32 NestingLevel,
Void *Context,
Void **ReturnValue)

PARAMETERS

ObjHandle A handle to an object that matches the search criteria.
Nesting Level Depth of this object within the namespace (distance from the

root)
Context The UserContext value that was passed as a parameter to the

AcpiWalkNamespace function.
ReturnValue A pointer to a location where the return value (if any) from the

user function is to be stored.

RETURN VALUE

Status AE_OK Continue the walk
AE_TERMINATE Stop the walk immediately
AE_DEPTH Go no deeper into the namespace
tree
All others Abort the walk with this exception
code

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-50 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Functional Description:

This function is called from AcpiWalkNamespace whenever a object of the desired type is found.
The walk can be modified by the exception code returned from this function. AE_TERMINATE
will abort the walk immediately, and AcpiWalkNamespace will return AE_OK to the original
caller. AE_DEPTH will prevent the walk from progressing any deeper down the current branch
of the namespace tree. AE_OK is the normal return that allows the walk to continue normally. All
other exception codes will cause the walk to terminate and the exception is returned to the
original caller of AcpiWalkNamespace.

• ACPI Resource Management

• AcpiGetCurrentResources

Get the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the current resources are
to be returned.

OutBuffer A pointer to a location where the current resource list is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.
AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.
• The OutBuffer pointer is NULL.
• The Pointer field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource list. Upon return, the Length field
contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_Device.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-51

Functional Description:

This function obtains the current resources for a specific device. The caller must first acquire a
handle for the desired device. The resource data is placed in the buffer pointed contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

• AcpiGetPossibleResources

Get the possible resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetPossibleResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the possible resources
are to be returned..

OutBuffer A pointer to a location where the possible resource list is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.
AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.
• The OutBuffer pointer is NULL.
• The Pointer field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource table. Upon return, the Length field
contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_Device.

Functional Description:

This function obtains the list of the possible resources for a specific device. The caller must first
acquire a handle for the desired device. The resource data is placed in the buffer contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-52 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• AcpiSetCurrentResources

Set the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiSetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *InBuffer)

PARAMETERS

Device A handle to a device object for which the current resource list
is to be set.

InBuffer A pointer to an ACPI_BUFFER containing the resources to be
set for the device.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resources were set successfully.
AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.
• The InBuffer pointer is NULL.
• The Pointer field of InBuffer is NULL.
• The Length field of InBuffer is zero.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_Device.

Functional Description:

This function sets the current resources for a specific device. The caller must first acquire a
handle for the desired device. The resource data is passed to the routine the buffer pointed to by
the InBuffer variable.

• AcpiGetIRQRoutingTable

Get the ACPI Interrupt Request (IRQ) Routing Table for an ACPI-related device.

ACPI_STATUS
AcpiGetIRQRoutingTable (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the IRQ routing table is
to be returned.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-53

OutBuffer A pointer to a location where the IRQ routing table is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.
AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.
• The OutBuffer pointer is NULL.
• The Pointer field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the IRQ table. Upon return, the Length field
contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_Device.

Functional Description:

This function obtains the IRQ routing table for a specific bus. It does so by attempting to execute
the _PRT method contained in the scope of the device whose handle is passed as a parameter.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

• ACPI Event Management

• AcpiEnable

Put the system into ACPI mode.

ACPI_STATUS
AcpiEnable (void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully enabled.
AE_ERROR Either ACPI mode is not supported by this system (legacy

mode only), the SCI interrupt handler could not be installed,
or the system could not be transitioned into ACPI mode.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-54 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

AE_NO_ACPI_TABLES The ACPI tables have not been successfully loaded.

Functional Description:

This function enables ACPI mode on the host computer system. It ensures that the system control
interrupt (SCI) is properly configured, disables SCI event sources, installs the SCI handler, and
transfers the system hardware into ACPI mode.

• AcpiDisable

Take the system out of ACPI mode.

ACPI_STATUS
AcpiDisable (void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully disabled.
AE_ERROR The system could not be transitioned out of ACPI mode.

Functional Description:

This function disables ACPI mode on the host computer system. It returns the system hardware to
original ACPI/legacy mode, disables all events, and removes the SCI interrupt handler.

• AcpiEnableEvent

Enable an ACPI Event (Fixed Events and General Purpose Events).

ACPI_STATUS
AcpiEnableEvent (

UINT32 Event,
UINT32 Type)

PARAMETERS

Event The fixed event or GPE to be enabled.
Type The type of event, one of these manifest constants:

EVENT_FIXED
EVENT_GPE

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-55

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully enabled.
AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.
• The Type is invalid.

Functional Description:

This function is enables a single ACPI event. Both Fixed Events and General Purpose Events may
be enabled with this interface.

• AcpiDisableEvent

Disable an ACPI Event (Fixed Events and General Purpose Events).

ACPI_STATUS
AcpiDisableEvent (

UINT32 Event,
UINT32 Type)

PARAMETERS

Event The fixed event or GPE to be disabled.
Type The type of event, one of these manifest constants:

EVENT_FIXED
EVENT_GPE

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully disabled.
AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.
• The Type is invalid.

Functional Description:

This function disables a single ACPI event. Both Fixed Events and General Purpose Events may
be disabled with this interface.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-56 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• AcpiInstallFixedEventHandler

Install a handler for ACPI Fixed Events.

ACPI_STATUS
AcpiInstallFixedEventHandler (

ACPI_EVENT_TYPE Event,
FIXED_EVENT_HANDLER Handler,
void *Context)

PARAMETERS

Event The fixed event to be managed by this handler.
Handler Address of the handler to be installed.
Context A context value that will be passed to the handler as a

parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.
AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.
• The Handler pointer is NULL.

AE_ERROR The fixed event enable register could not be written.
AE_EXIST A handler for this event is already installed.

Functional Description:

This function installs a handler for a predefined fixed event.

• Interface to Fixed Event Handlers

Definition of the handler interface for Fixed Events.

typedef
UINT32 (*FIXED_EVENT_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallFixedEventHandler function.

RETURN VALUE

None

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-57

Functional Description:

This handler is installed via AcpiInstallFixedEventHandler. It is called whenever the particular
fixed event it was installed to handle occurs.

NOTE: This function executes in the context of an interrupt handler.

• AcpiRemoveFixedEventHandler

Remove an ACPI Fixed Event handler.

ACPI_STATUS
AcpiRemoveFixedEventHandler (

ACPI_EVENT_TYPE Event,
FIXED_EVENT_HANDLER Handler)

PARAMETERS

Event The fixed event whose handler is to be removed.
Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.
AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.
• The Handler pointer is NULL.
• The Handler address is not the same as the one that is

installed.
AE_ERROR The fixed event enable register could not be written.
AE_NOT_EXIST There is no handler installed for this event.

Functional Description:

This function removes a handler for a predefined fixed event that was previously installed via a
call to AcpiInstallFixedEventHandler.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-58 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• AcpiInstallGpeHandler

Install a handler for ACPI General Purpose Events.

ACPI_STATUS
AcpiInstallGpeHandler (

UINT32 GpeNumber,
GPE_HANDLER Handler,
void *Context)

PARAMETERS

GpeNumber A zero based Gpe number. Gpe numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Handler Address of the handler to be installed.
Context A context value that will be passed to the handler as a

parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.
AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.
• The Handler pointer is NULL.

AE_EXIST A handler for this general purpose event is already installed.

Functional Description:

This function installs a handler for a general purpose event

• Interface to General Purpose Event Handlers

Definition of the handler interface for General Purpose Events.

typedef
void (*GPE_HANDLER) (

Void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallGpeHandler function.

RETURN VALUE

None

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-59

Functional Description:

This handler is installed via AcpiInstallGpeHandler. It is called whenever the particular general
purpose event it was installed to handle occurs.

NOTE: This function executes in the context of an interrupt handler.

• AcpiRemoveGpeHandler

Remove an ACPI General Purpose Event handler.

ACPI_STATUS
AcpiRemoveGpeHandler (

UINT32 GpeNumber,
GPE_HANDLER Handler)

PARAMETERS

GpeNumber A zero based Gpe number. Gpe numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.
AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.
• The Handler pointer is NULL.
• The Handler address is not the same as the one that is

installed
AE_NOT_EXIST There is no handler installed for this general purpose event.

Functional Description:

This function removes a handler for a general purpose event that was previously installed via a
call to AcpiInstallGpeHandler.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-60 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• AcpiInstallNotifyHandler

Install a handler for notification events on an ACPI object.

ACPI_STATUS
AcpiInstallNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
NOTIFY_HANDLER Handler,
void *Context)

PARAMETERS

Object Handle to the object for which notify events will be handled.
Notifies on this object will be dispatched to the handler. If
ACPI_ROOT_OBJECT is specified, the handler will become
a global handler that receives all (systemwide) notifications of
the Type specified. Otherwise, this object must be one of the
following types:

ACPI_TYPE_Device
ACPI_TYPE_Processor
ACPI_TYPE_Power
ACPI_TYPE_ThermalZone

Type Specifies the type of notifications that are to be received by
this handler:

ACPI_SYSTEM_NOTIFY – Notifications 0x00 to
0x7F

ACPI_DEVICE_NOTIFY – Notifications 0x80 to
0xFF

Handler Address of the handler to be installed.
Context A context value that will be passed to the handler as a

parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.
AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.
• The Type is not a valid value.
• The Handler pointer is NULL.

AE_EXIST A handler for notifications on this object is already installed.
AE_TYPE The type of the Object is not one of the supported object types.

Functional Description:

This function installs a handler for notify events on an ACPI object. According to the ACPI
specification, the only objects that can receive notifications are Devices and Thermal Zones.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-61

A global handler for each notify type may be installed by using the ACPI_ROOT_OBJECT
constant as the object handle. When a notification is received, it is first dispatched to the global
handler (if there is one), and then to the device-specific notify handler (if there is one)

• Interface to Notification Event Handlers

Definition of the handler interface for Notification Events.

typedef
void (*NOTIFY_HANDLER) (

ACPI_HANDLE Device
UINT32 Value,
void *Context)

PARAMETERS

Device The handle for the device on which the notify occurred.
Value The notify value that was passed as a parameter to the AML

notify operation.
Context The Context value that was passed as a parameter to the

AcpiInstallNotifyHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallNotifyHandler. It is called whenever a notify occurs on
the target object. If the handler is installed as a global notification handler, it is called for every
notify of the type specified when it was installed.

NOTE: this function does not execute in the context of an interrupt handler.

• AcpiRemoveNotifyHandler

Remove a handler for ACPI notification events.

ACPI_STATUS
AcpiRemoveNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
NOTIFY_HANDLER Handler)

PARAMETERS

Object Handle to the object for which a notify handler will be
removed. If ACPI_ROOT_OBJECT is specified, the global
handler of the Type specified is removed. Otherwise, this
object must be one of the following types:

ACPI_TYPE_Device

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-62 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

ACPI_TYPE_Processor
ACPI_TYPE_Power
ACPI_TYPE_ThermalZone

HandlerType Specifies the type of notify handler to be removed:
ACPI_SYSTEM_NOTIFY – Notifications 0x00 to

0x7F
ACPI_DEVICE_NOTIFY – Notifications 0x80 to

0xFF
Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.
AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.
• The Handler pointer is NULL.
• The Handler address is not the same as the one that is

installed
AE_NOT_EXIST There is no handler installed for notifications on this object.
AE_TYPE The type of the Object is not one of the supported object types

Functional Description:

This function removes a handler for notify events that was previously installed via a call to
AcpiInstallNotifyHandler.

• AcpiInstallAddressSpaceHandler

Install a handler for ACPI Operation Region events.

ACPI_STATUS
AcpiInstallAddressSpaceHandler (

ACPI_HANDLE Device,
UINT32 SpaceId,
ADDRESS_SPACE_HANDLER Handler,
void *Context)

PARAMETERS

Device Handle for the device for which a address space handler will
be installed. This object may be specified as the
ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

ACPI_TYPE_Device,
ACPI_TYPE_Processor,
ACPI_TYPE_ThermalZone

SpaceId The ID of the Address Space or Operation Region to be
managed by this handler.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-63

Handler Address of the handler to be installed if the special value
ACPI_DEFAULT_HANDLER is used the handler supplied
with by the ACPI CA for that address space will be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.
AE_BAD_PARAMETER At least one of the following is true:

• The Device handle does not refer to an object of type
Device, Processor, ThermalZone, or the root object.

• The SpaceId is invalid.
• The Handler pointer is NULL.

AE_EXIST A handler for this address space or operation region is already
installed.

AE_NOT_EXIST ACPI_DEFAULT_HANDLER was specified for an address
space which has no default handler.

AE_NO_MEMORY There was insufficient memory to install the handler.

Functional Description:

This function installs a handler for an Address Space.

• Interface to Address Space Handlers

Definition of the handler interface for Operation Region Events.

typedef
void (*ADDRESS_SPACE_HANDLER) (

UINT32 Function,
UINT32 Address,
UINT32 BitWidth,
UINT32 *Value,
Void *Context)

PARAMETERS

Function The type of function to be performed; must be one of the
following manifest constants:
ADDRESS_SPACE_READ
ADDRESS_SPACE_WRITE

Address A space-specific address where the operation is to be
performed.

BitWidth The width of the operation, typically 8, 16, 32, or 64.
*Value A pointer to the value to be written (WRITE), or where the

value that was read should be returned (READ).

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-64 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Context An address space specific Context value. Typically this is the
context that was passed as a parameter to the
AcpiInstallAddressSpaceHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler. It is invoked whenever AML code
attempts to access the target Operation Region.

NOTE: this function does not execute in the context of an interrupt handler.

• Context for the Default PCI Address Space Handler

Definition of the context required for installation of the default PCI address space handler.

UINT32 PCIContext

Where PCIContext contains the PCI bus number and the PCI segment number. With the bus
number in the low 16 bits and the segment number in the high 16 bits.

• AcpiRemoveAddressSpaceHandler

Remove an ACPI Operation Region handler.

ACPI_STATUS
AcpiRemoveAddressSpaceHandler (

UINT32 SpaceId,
ADDRESS_SPACE_HANDLER Handler)

PARAMETERS

SpaceId The ID of the Address Space or Operation Region whose
handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.
AE_BAD_PARAMETER At least one of the following is true:

• The SpaceId is invalid.
• The Handler pointer is NULL.
• The Handler address is not the same as the one that is

installed

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-65

AE_NOT_EXIST There is no handler installed for this address space or
operation region.

Functional Description:

This function removes a handler for an Address Space or Operation Region that was previously
installed via a call to AcpiInstallAddressSpaceHandler.

• ACPI Hardware Management

• AcpiSetFirmwareWakingVector

Set the ROM BIOS wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector (

void *Vector)

PARAMETERS

Vector The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vector was set successfully.
AE_BAD_PARAMETER Unrecognized parameter

Functional Description:

This function sets the firmware (ROM BIOS) wake vector.

If the function fails an appropriate status will be returned and the value of the waking vector will
be undisturbed.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-66 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• AcpiGetFirmwareWakingVector

Get the current value of the ROM BIOS wake vector.

ACPI_STATUS
AcpiGetFirmwareWakingVector (

void **OutVector)

PARAMETERS

OutVector A pointer to a location where the current vector (physical
address) is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vector was successfully returned.
AE_BAD_PARAMETER The OutVector pointer is NULL.

Functional Description:

This function obtains the BIOS wake vector. This address is returned as a (void *) physical
address.

If the function fails an appropriate status will be returned and the value of the OutVector location
will be undetermined.

• AcpiAcquireGlobalLock

Acquire the ACPI Global Lock.

ACPI_STATUS
AcpiAcquireGlobalLock (

UINT32 Timeout,
ACPI_HANDLE *OutHandle)

PARAMETERS

Timeout The maximum time (in System Ticks) the caller is willing to
wait for the global lock.

OutHandle A pointer to where a handle to the lock is to be returned. This
handle is required to release the global lock.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-67

EXCEPTIONS

AE_OK The global lock was successfully acquired.
AE_BAD_PARAMETER The OutHandle pointer is NULL.
AE_TIME The global lock could not be acquired within the specified

time limit.

Functional Description:

This function obtains exclusive access to the single system-wide ACPI Global Lock. The purpose
of the global lock is to ensure exclusive access to resources that must be shared between the
operating system and the firmware.

• AcpiReleaseGlobalLock

Release the ACPI Global Lock.

ACPI_STATUS
AcpiReleaseGlobalLock (

ACPI_HANDLE Handle)

PARAMETERS

Handle The handle that was obtained when the Global Lock was
acquired. This allows different threads to acquire and release
the lock, as long as they share the handle.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully released
AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

This function releases the global lock. The releasing thread may be different from the thread that
acquired the lock. However, the Handle must be the same handle that was returned by
AcpiAcquireGlobalLock.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-68 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• AcpiGetTimer

Get the current value of the ACPI timer.

ACPI_STATUS
AcpiGetTimer (

UINT32 *OutValue)

PARAMETERS

OutValue A pointer to where the current value of the ACPI Timer is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The current value of the timer was successfully retrieved and
returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function returns the current value of the ACPI timer.

• ACPI Register Access

• AcpiReadEnableBit

• AcpiReadStatusBit

• AcpiClearStatusBit

• AcpiReadRegister

• AcpiWriteRegister

• Legacy Mode Support

• AcpiSetLegacyMode

• AcpiLegacyModeStatus

• AcpiLegacyModeCapabilities

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-69

• Sleep Transitions Support (S-states)

• AcpiSleepStatesSupported

• AcpiSleep

• AcpiWakeup

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-70 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

OS-Dependent Component - External
Interface Definition
This section contains the definitions of the interfaces that must be exported by the OS-dependent
component. The OS-independent component requires all of these interfaces. All interfaces to the
OS-dependent component that are intended for use by the OS-Independent Component of the
ACPI subsystem are prefixed by the letters Osd.

• Memory Management

These interfaces provide an OS-independent memory management interface for use by the OSI
component.

• OsdMapMemory

Map physical memory into the caller’s address space.

void *
OsdMapMemory (

Void *PhysicalAddress,
UINT32 Length)

PARAMETERS

PhysicalAddress A full physical address of the memory to be mapped into the
caller’s address space.

Length The amount of memory to be mapped starting at the given
physical address.

RETURN VALUE

Memory A valid pointer to the mapped memory. NULL is returned if
the operation could not be completed.

Functional Description:

This function maps a physical address into the caller’s address space. A logical pointer is
returned.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-71

• OsdUnMapMemory

Remove a physical to logical memory mapping.

void
OsdUnMapMemory (

Void *LogicalAddress,
UINT32 Length)

PARAMETERS

LogicalAddress The logical address that was returned from a previous call to
OsdMapMemory.

Length The amount of memory that was mapped. This value must be
identical to the value used in the call to OsdMapMemory.

RETURN VALUE

None

Functional Description:

This function deletes a mapping that was created by OsdMapMemory.

• OsdAllocate

Allocate memory from the dynamic memory pool.

void *
OsdAllocate (

UINT32 Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory cannot be assumed to be
initialized to any particular value or values.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-72 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• OsdCallocate

Allocate and initialize memory.

void *
OsdCallocate (

UINT32 Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates and initializes memory. The returned memory is guaranteed
to be initialized to all zeros.

• OsdFree

Free previously allocated memory.

void
OsdFree (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously allocated via OsdAllocate or OsdCallocate.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-73

• Scheduling Services

• OsdQueueForExecution

Schedule a procedure for deferred execution.

ACPI_STATUS
OsdQueueForExecution (

UINT32 Priority,
OSD_EXECUTION_CALLBACK Function,
Void *Context);)

PARAMETERS

Priority Requested priority of the execution – one of these manifest
constants:

OSD_PRIORITY_HIGH

OSD_PRIORITY_MED

OSD_PRIORITY_LO

Function Address of the procedure to execute.
Context A context value to be passed to the called procedure.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The procedure was successfully queued for execution by the
host operating system. This does not indicate that the
procedure has actually executed, however.

AE_BAD_PARAMETER At least one of the following is true:
• The Priority is invalid.
• The Function pointer is NULL.

Functional Description:

This function queues a procedure for later scheduling and execution. .

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-74 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• OsdSleep

Suspend the running task (course granularity).

ACPI_STATUS
OsdSleep (

UINT32 Seconds,
UINT32 Milliseconds);)

PARAMETERS

Seconds The number of whole seconds to sleep.
Milliseconds The number of partial seconds to sleep, in milliseconds.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The running thread slept for the time specified.
AE_BAD_PARAMETER Unrecognized parameter
AE_ERROR The running thread did not sleep because of a host OS error.

Functional Description:

This function sleeps for the specified time. Execution of the running thread is suspended for this
time. The sleep granularity is one millisecond.

• OsdSleepUsec

Suspend the running task (fine granularity).

ACPI_STATUS
OsdSleepUsec (

UINT32 Microseconds)

PARAMETERS

Micrososeconds The amount of time to sleep in microseconds.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The running thread slept for the time specified.
AE_BAD_PARAMETER Unrecognized parameter
AE_ERROR The running thread did not sleep because of a host OS error.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-75

Functional Description:

This function sleeps for the specified time. Execution of the running thread is suspended for this
time. The sleep granularity is one microsecond.

• Mutual Exclusion and Synchronization

Thread synchronization and locking.

NOTE: These interfaces MUST perform parameter validation of the input handle to at least the
extent of detecting a null handle and returning the appropriate exception.

3.6.1 OsdCreateSemaphore
Create a semaphore.

ACPI_STATUS
OsdCreateSemaphore (

UINT32 InitialUnits,
ACPI_HANDLE *OutHandle)

PARAMETERS

InitialUnits The initial number of units to be assigned to the semaphore.
OutHandle A pointer to a location where a handle to the semaphore is to

be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully created.
AE_BAD_PARAMETER At least one of the following is true:

• The InitialUnits is invalid.
• The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

Create a standard semaphore.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-76 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

3.6.2 OsdDeleteSemaphore
Delete a semaphore.

ACPI_STATUS
OsdDeleteSemaphore (

ACPI_HANDLE Handle)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to OsdCreateSemaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully deleted.
AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Delete a semaphore.

3.6.3 OsdWaitSemaphore
Wait for units from a semaphore.

ACPI_STATUS
OsdWaitSemaphore (

ACPI_HANDLE Handle,
UINT32 Units,
UINT32 Timeout)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to OsdCreateSemaphore.

Units The number of units the caller is requesting.
Timeout How long the caller is willing to wait for the units.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested units were successfully received.
AE_BAD_PARAMETER The Handle is invalid.
AE_TIME The units could not be acquired within the specified time limit.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-77

Functional Description:

Wait for the specified number of units from a semaphore.

OsdSignalSemaphore
Send units to a semaphore.

ACPI_STATUS
OsdSignalSemaphore (

ACPI_HANDLE Handle,
UINT32 Units)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to OsdCreateSemaphore.

Units The number of units to send to the semaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully signaled.
AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Send the requested number of units to a semaphore.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-78 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• Interrupt Handling

Interrupt handler installation and removal.

• OsdInstallInterruptHandler

Install a handler for a hardware interrupt level.

ACPI_STATUS
OsdInstallInterruptHandler (

UINT32 InterruptLevel,
OSD_HANDLER Handler,
void *Context)

PARAMETERS

InterruptNumber Interrupt level that the handler will service.
Handler Address of the handler.
Context A context value that is passed to the handler when the

interrupt is dispatched.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.
AE_BAD_PARAMETER At least one of the following is true:

• The InterruptNumber is invalid.
• The Handler pointer is NULL.

AE_EXIST A handler for this interrupt level is already installed.

Functional Description:

This function installs an interrupt handler for a hardware interrupt level. The ACPI driver must
install an interrupt handler to service the SCI (System Control Interrupt) which it owns. The
interrupt level for the SCI interrupt is obtained from the ACPI tables.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-79

• Interface to OS-Independent Interrupt Handlers

Definition of the interface for OS-independent interrupt handlers.

typedef
UINT32 (*OSD_HANDLER) (

Void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
OsdInstallInterruptHandler function.

RETURN VALUE

HandlerActionTaken The handler should return one of the following manifest
constants:

INTERRUPT_HANDLED
INTERRUPT_NOT_HANDLED
INTERRUPT_ERROR

Functional Description:

The OS-independent interrupt handler must be called from an OS-dependent interrupt handler
“wrapper” that exists within the OS-dependent component. It is the responsibility of the OS-
dependent component to manage the installed interrupt handler(s), and dispatch interrupts to the
handler(s) appropriately.

• OsdRemoveInterruptHandler

Remove an interrupt handler.

ACPI_STATUS
OsdRemoveInterruptHandler (

UINT32 InterruptNumber,
OSD_HANDLER Handler)

PARAMETERS

InterruptNumber Interrupt number that the handler is currently servicing.
Handler Address of the handler that was previously installed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.
AE_BAD_PARAMETER At least one of the following is true:

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-80 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• The InterruptNumber is invalid.
• The Handler pointer is NULL.
• The Handler address is not the same as the one that is

installed
AE_NOT_EXIST There is no handler installed for this interrupt level.

Functional Description:

Remove a previously installed hardware interrupt handler.

• Stream I/O

These interfaces provide formatted stream I/O. Used by the OSI mainly for debug output, these
functions may be redirected to whatever output device or file is appropriate for the host operating
system.

• OsdPrintf

Formatted stream output.

INT32
OsdPrintf (

OSD_FILE *Stream,
const char *Format,
…)

PARAMETERS

Stream Open stream to write to. NULL is defined to be the debugger
output channel.

Format A standard printf format string.
… Variable parameter list.

RETURN VALUE

Count Number of parameters successfully printed. –1 on error.

Functional Description:

This function provides formatted output to an open OSD stream.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-81

• OsdVprintf

Formatted stream output.

INT32
OsdVprintf (

OSD_FILE *Stream,
const char *Format,
va_list Args)

PARAMETERS

Stream Open stream to write to. NULL is defined to be the debugger
output channel.

Format A standard printf format string.
Args A variable parameter list.

RETURN VALUE

Count Number of parameters successfully printed. –1 on error.

Functional Description:

This function provides formatted output to an open OSD stream via the va_list argument format.

• Hardware Abstraction

These interfaces allow the OS-dependent component to implement hardware I/O services in any
manner that is acceptable to the host OS. The actual hardware I/O instructions may execute
within the OS-dependent component itself, or these calls may be translated into additional OS
calls — such as calls to a Hardware Abstraction Component.

• OsdIn8

Read 8 bits from an input port.

UINT8
OsdIn8 (

UINT16 InPort)

PARAMETERS

InPort Hardware I/O port address to read from.

RETURN VALUE

Value The data returned by the read operation.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-82 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Functional Description:

This function is used to read a BYTE (8 bits) from the specified input port.

• OsdIn16

Read 16 bits from an input port.

UINT16
OsdIn16 (

UINT16 InPort)

PARAMETERS

InPort Hardware I/O port address to read from.

RETURN VALUE

Value The data returned by the read operation.

Functional Description:

This function reads a WORD (16 bits) from the specified input port.

• OsdIn32

Read 32 bits from an input port.

UINT32
OsdIn32 (

UINT16 InPort)

PARAMETERS

InPort Hardware I/O port address to read from.

RETURN VALUE

Value The data returned by the read operation.

Functional Description:

This function reads a DWORD (32 bits) from the specified input port.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-83

• OsdOut8

Write 8 bits to an output port.

void
OsdOut8 (

UINT16 OutPort,
UINT8 Value)

PARAMETERS

OutPort Hardware I/O port address where data is to be written.
Value Data to be written to the I/O port.

RETURN VALUE

None

Functional Description:

This function writes a BYTE (8 bits) to the specified output port.

• OsdOut16

Write 16 bits to an output port.

void
OsdOut16 (

UINT16 OutPort,
UINT16 Value)

PARAMETERS

OutPort Hardware I/O port address where data is to be written.
Value Data to be written to the I/O port.

RETURN VALUE

None

Functional Description:

This function writes a WORD (16 bits) to the specified output port.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-84 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

• OsdOut32

Write 32 bits to an output port.

void
OsdOut32 (

UINT16 OutPort,
UINT32 Value)

PARAMETERS

OutPort Hardware I/O port address where data is to be written.
Value Data to be written to the I/O port.

RETURN VALUE

None

Functional Description:

This function writes a DWORD (32 bits) to the specified output port.

• OsdReadPciCfgByte

Read 8 bits from a PCI configuration register.

ACPI_STATUS
OsdReadPciCfgByte (

UINT32 SegBus,
UINT32 DeviceFunction,
UINT32 Register,
UINT8 *Value)

PARAMETERS

SegBus The PCI Segment number (Hiword) and Bus ID (Lowword).
DeviceFunction The PCI device number (Hiword) and function number

(Lowword).
Register The PCI register address to be read from.
Value A pointer to a location where the data is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads a BYTE (8 bits) from the specified PCI configuration port.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-85

• OsdReadPciCfgWord

Read 16 bits from a PCI configuration register.

ACPI_STATUS
OsdReadPciCfgWord (

UINT32 SegBus,
UINT32 DeviceFunction,
UINT32 Register,
UINT16 *Value)

PARAMETERS

SegBus The PCI Segment number (Hiword) and Bus ID (Lowword).
DeviceFunction The PCI device number (Hiword) and function number

(Lowword).
Register The PCI register address to be read from.
Value A pointer to a location where the data is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads a WORD (16 bits) from the specified PCI configuration port.

• OsdReadPciCfgDword

Read 32 bits from a PCI configuration register.

ACPI_STATUS
OsdReadPciCfgDword (

UINT32 SegBus,
UINT32 DeviceFunction,
UINT32 Register,
UINT32 *Value)

PARAMETERS

SegBus The PCI Segment number (Hiword) and Bus ID (Lowword).
DeviceFunction The PCI device number (Hiword) and function number

(Lowword).
Register The PCI register address to be read from.
Value A pointer to a location where the data is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-86 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Functional Description:

This function reads a DWORD (32 bits) from the specified PCI configuration port.

• OsdWritePciCfgByte

Write 8 bits to a PCI configuration register.

ACPI_STATUS
OsdWritePciCfgByte (

UINT32 SegBus,
UINT32 DeviceFunction,
UINT32 Register,
UINT8 Value)

PARAMETERS

SegBus The PCI Segment number (Hiword) and Bus ID (Lowword).
DeviceFunction The PCI device number (Hiword) and function number

(Lowword).
Register The PCI register address to be read from.
Value Data to be written.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes a BYTE (8 bits) to the specified PCI configuration port.

• OsdWritePciCfgWord

Write 16 bits to a PCI configuration register.

ACPI_STATUS
OsdWritePciCfgWord (

UINT32 SegBus,
UINT32 DeviceFunction,
UINT32 Register,
UINT16 Value)

PARAMETERS

SegBus The PCI Segment number (Hiword) and Bus ID (Lowword).
DeviceFunction The PCI device number (Hiword) and function number

(Lowword).
Register The PCI register address to be read from.
Value Data to be written.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-87

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes a WORD (16 bits) to the specified PCI configuration port.

• OsdWritePciCfgDword

Write 32 bits to a PCI configuration register.

ACPI_STATUS
OsdWritePciCfgDword (

UINT32 SegBus,
UINT32 DeviceFunction,
UINT32 Register,
UINT32 Value)

PARAMETERS

SegBus The PCI Segment number (Hiword) and Bus ID (Lowword).
DeviceFunction The PCI device number (Hiword) and function number

(Lowword).
Register The PCI register address to be read from.
Value Data to be written.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes a DWORD (32 bits) to the specified PCI configuration port.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-88 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

User Guide

Using the ACPI OSI Interfaces

Initialization Sequence
In order to allow the most flexibility for the host operating system, there is no single interface that
initializes the entire ACPI subsystem. Instead, the subsystem is initialized in stages, at the times
that are appropriate for the host OS. The following example shows the sequence of initialization
calls that must be made; it is up to the host interface (OS-dependent component) to make these
calls when they are appropriate.

1. Initialize the OSI Component:

Status = AcpiInitialize ();

2. Load the ACPI tables from the firmware:

Status = AcpiLoadFirmwareTables ();

3. Build the internal namespace from the loaded ACPI tables:

Status = AcpiLoadNamespace ();

4. Put the system into ACPI mode:

Status = AcpiEnable ();

Shutdown Sequence
The OS-independent component does not absolutely require a shutdown before the system
terminates. It does not hold any cached data that must be flushed before shutdown. However, if
the ACPI subsystem is to be unloaded at any time during system operation, the subsystem should
be shutdown so that resources that are held internally can be released back to the host OS. These
resources include memory segments, an interrupt handler, and the ACPI hardware itself. To
shutdown the OS-independent component, the following calls should be made:

1. Put the system back into legacy mode:

Status = AcpiDisable ();

2. Unload the namespace and free all resources:

Status = AcpiTerminate ();

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-89

Traversing the ACPI Namespace (Low Level)
This example demonstrates traversal of the APCI namespace using the low-level Acpi*
primitives. The code is in fact the implementation of the higher-level AcpiWalkNamespace
interface, and therefore this example has two purposes:

1. Demonstrate how the low-level namespace interfaces are used.

2. Provide an understanding of how the namespace walk interface works.

ACPI_STATUS
AcpiWalkNamespace (
 ACPI_OBJECT_TYPE Type,
 ACPI_HANDLE StartHandle,
 UINT32 MaxDepth,
 WALK_CALLBACK UserFunction,
 void *Context,
 void **ReturnValue)
{
 ACPI_HANDLE ObjHandle = 0;
 ACPI_HANDLE Scope;
 ACPI_HANDLE NewScope;
 void *UserReturnVal;
 UINT32 Level = 1;

/* Parameter validation */

 if ((Type > ACPI_TYPE_MAX) ||
 (!MaxDepth) ||
 (!UserFunction))
 {
 return_ACPI_STATUS (AE_BAD_PARAMETER);
 }

 /* Special case for the namespace root object */

 if (StartObject == ACPI_ROOT_OBJECT)
 {
 StartObject = Gbl_RootObject;
 }

 /* Null child means "get first object" */

 ParentHandle = StartObject;
 ChildHandle = 0;
 ChildType = ACPI_TYPE_Any;
 Level = 1;

 /*
 * Traverse the tree of objects until we bubble back up to where we
 * started. When Level is zero, the loop is done because we have
 * bubbled up to (and passed) the original parent handle
(StartHandle)
 */

 while (Level > 0)
 {

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-90 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

 /* Get the next typed object in this scope. Null returned if not
found */

 Status = AE_OK;
 if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_Any, ParentHandle,
 ChildHandle, &ChildHandle)))
 {
 /* Found an object, Get the type if we are not searching for
ANY */

 if (Type != ACPI_TYPE_Any)
 {
 AcpiGetType (ChildHandle, &ChildType);
 }

 if (ChildType == Type)
 {
 /* Found a matching object, invoke the user callback
function */

 Status = UserFunction (ChildHandle, Level, Context,
ReturnValue);
 switch (Status)
 {
 case AE_OK:
 case AE_DEPTH:
 break; /* Just keep going */

 case AE_TERMINATE:
 return_ACPI_STATUS (AE_OK); /* Exit now, with OK
status */
 break;

 default:
 return_ACPI_STATUS (Status); /* All others are
valid exceptions */
 break;
 }
 }

 /*
 * Depth first search: Attempt to go down another
 * level in the namespace if we are allowed to. Don't go any
further if we
 * have reached the caller specified maximum depth or if the
user function
 * has specified that the maximum depth has been reached.
 */

 if ((Level < MaxDepth) && (Status != AE_DEPTH))
 {
 if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_Any,
ChildHandle,
 0, NULL)))
 {
 /* There is at least one child of this object, visit
the object */

 Level++;
 ParentHandle = ChildHandle;
 ChildHandle = 0;

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-91

 }
 }
 }

 else
 {
 /*
 * No more children in this object (AcpiGetNextObject
failed),
 * go back upwards in the namespace tree to the object's
parent.
 */
 Level--;
 ChildHandle = ParentHandle;
 AcpiGetParent (ParentHandle, &ParentHandle);
 }
 }

 return_ACPI_STATUS (AE_OK); /* Complete walk, not terminated by user
function */
}

Traversing the ACPI Namespace (High Level)
This example demonstrates the use of the AcpiWalkNamespace interface and other Acpi*
interfaces. It shows how to properly invoke AcpiWalkNamespace and write a callback routine.

This code searches for all device objects in the namespace under the system bus (where most, if
not all devices usually reside.) The callback function always returns NULL, meaning that the walk
is not terminated until the entire namespace under the system bus has been traversed.

Part 1: This is the top-level procedure that invokes AcpiWalkNamespace.

DisplaySystemDevices (void)
{
ACPI_HANDLE SysBusHandle;

AcpiNameToHandle (0, NS_SYSTEM_BUS, &SysBusHandle);

printf ("Display of all devices in the namespace:\n");

AcpiWalkNamespace (ACPI_TYPE_Device, SysBusHandle, INT_MAX,
DisplayOneDevice, NULL, NULL);

}

Part 2: This is the callback routine that is repeatedly invoked from AcpiWalkNamespace.

void *
DisplayOneDevice (
 ACPI_HANDLE ObjHandle,
 UINT32 Level,
 void *Context)
{
 ACPI_STATUS Status;
 ACPI_DEVICE_INFO Info;
 ACPI_BUFFER Path;
 Char Buffer[256];

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP A-92 Appendix A: ACPI Component Architecture
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

 Path.Length = sizeof (Buffer);
 Path.Pointer = Buffer;

 /* Get the full path of this device and print it */

 Status = AcpiHandleToPathname (ObjHandle, &Path);
 if (ACPI_SUCCESS (Status))
 {
 printf ("%s\n", Path.Pointer));
 }

 /* Get the device info for this device and print it */

 Status = AcpiGetDeviceInfo (ObjHandle, &Info);
 if (ACPI_SUCCESS (Status))
 {
 printf (" HID: %.8X, ADR: %.8X, Status: %x\n",
 Info.HardwareId, Info.Address, Info.CurrentStatus));
 }

 return NULL;
}

Implementing the OS-Dependent Component

Parameter Validation
In all implementations of the OS-dependent component, the interfaces should adhere to this EPS
in the actual interface parameters as well as the returned exception codes. This means that the
parameter validation is not optional and that the OS-independent layer depends on correct
exception codes returned from the OSD.

Memory Management
Implementation of the memory allocation functions should be straightforward. If the host
operating system has several kernel-level memory pools that can be used for allocation, it may be
useful to know some of the dynamic memory requirements of the OS-independent component.

During initialization, the ACPI tables are copied into local memory segments. Some of these
tables (especially the DSDT) can be fairly large, up to about 64K. The namespace is built from
multiple small memory segments, each of a fixed (but configurable) length. The default
namespace table length is 16 entries times about 32 bytes each for a total of 512 bytes per table
and per allocation.

During operation, many internal objects are created and deleted while servicing requests. The size
of an internal object is about 32 bytes, and this is the primary run-time memory request size.

The implementation of OsdCallocate must absolutely ensure that the memory segment that is
returned is initialized to all zeros. Much of the OS-independent code depends on this initialization
and will cease to function if this function is not correctly implemented.

UNIX Developer’s Interface Guide for Intel-Based Servers

Appendix A: ACPI Component Architecture UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

A-93

Interrupt Handling
In order to support the OS-independent interrupt handler that is implemented in the OSI, the OSD
must provide a local interrupt handler whose interface conforms to the requirements of the host
operating system. This local interrupt handler is a wrapper for the OS-independent handler; it is
the actual handler that is installed for the given interrupt level. The task of this wrapper is to
handle incoming interrupts and dispatch them to the OS-independent handler via the OS-
independent handler interface. When the OSI handler returns, the wrapper performs any
necessary cleanup and exits the interrupt.

Stream I/O
The OsdPrintf and OsdVprintf functions can usually be implemented using a kernel-level debug
print facility. Kernel printf functions usually output data to a serial port or some other special
debug facility. If there is more than one type of debug print routine, use one that can be called
from within an interrupt handler so that Fixed Events and General Purpose events can be traced.

Hardware Abstraction
The intent of the hardware I/O interfaces is to allow these calls to be translated into calls or
macros provided by the host OS for this purpose. However, if the host does not provide a
hardware abstraction service, these functions can be implemented simply and directly via I/O
machine instructions.

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

R-1

References

A number of the references are Intel Confidential. These references are available through an Intel-
approved source or an Intel representative.

ACPI1 Advanced Configuration and Power Interface Specification, Revision 1.0b
http://www.teleport.com/~acpi/.

ACPI2 PCI Hot-plug and ACPI Guidelines, Revision 0.1. This document can be obtained
from Intel Corporation.

ACPI CA Unix Developer’s Interface Guide for IA-64 Servers, Revision 1.0, Appendix A:
ACPI Component Architecture: ACPI Subsystem.

DIG64 Developer’s Interface Guide for IA-64 Servers, Revision 1.0, http://dig64.org/.

EFI1 Extensible Firmware Interface Specification, Revision 0.91.
http://developer.intel.com/technology/efi.

ELF1 ELF-64 Object File Format Specification.
http://www.sco.com/developer/gabi/contents.html.

ELF2 Processor-Specific ELF Supplement for IA-64. This document can be obtained
from Intel Corporation.

SAB1 System V Application Binary Interface Specification
http://www.sco.com/developer/devspecs/.

SAB2 System V Application Binary Interface Intel 386 Architecture Processor
Supplement Specification http://www.sco.com/developer/devspecs/.

SAB3 System V ABI Updates http://www.sco.com/developer/devspecs/.

SRC1 IA-64 Software Conventions and Runtime Architecture Guide
http://developer.intel.com/design/ia64/devinfo.htm.

UDI1 UDI Specifications, Revision 1.0 http://www.project-udi.org.

http://www.teleport.com/~acpi/
http://dig64.org/
http://www.software.hp.com/stk/toc.html
http://www.software.hp.com/stk/toc.html
http://www.sco.com/developer/devspecs/
http://www.sco.com/developer/devspecs/
http://www.sco.com/developer/devspecs/
http://developer.intel.com/design/ia64/devinfo.htm
http://www.project-udi.org/

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP R-2
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

UDI2 UDI Core Specification, Revision 1.0 http://www.project-udi.org.

UDI3 UDI PCI Bus Binding Specification Revision 1.0 http://www.project-udi.org.

UDI4 UDI SCSI Driver Specification, Revision 1.0 http://www.project-udi.org.

UDI5 UDI Network Driver Specification, Revision 1.0 http://www.project-udi.org.

UDI6 UDI Physical I/O Specification Revision 1.0 http://www.project-udi.org.

USB1 Open USBDI Specification http://www.usb.org/.

http://www.sco.com/UDI
http://www.project-udi.org/
http://www.sco.com/UDI
http://www.project-udi.org/
http://www.sco.com/UDI
http://www.project-udi.org/
http://www.sco.com/UDI
http://www.project-udi.org/
http://www.sco.com/UDI
http://www.project-udi.org/
http://www.usb.org/

UNIX Developer’s Interface Guide for Intel-Based Servers

G-1 UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Glossary

ACPI (Advanced Configuration and Power Interface)

A specification that defines a new interface to the system board that enables the operating
system to implement operating system-directed power management and system
configuration.

ACPI Subsystem

The combination of the operating system independent and operating system dependent
components which together comprise the ACPI “driver” or subsystem.

AML

ACPI Machine Language. Pseudo code, or byte code, capable of being executed by a
virtual machine or interpreter.

AML Interpreter

AML byte code, created by the ASL compiler, is stored in a hierarchical database called
the ACPI name space. The AML interpreter executes AML code. The interpreter is the
biggest sub-component of the ACPI subsystem. It parses the ACPI tables to create the
name space, and executes control methods stored in the name space during run-time.

BIOS

Basic Input Output System (System firmware component).

Boot

The period of time from the end of POST to the OS disconnect from EFI Boot services.

Control Method

ASL control routines used to manipulate the ACPI platform. These routines are capable
of performing I/O, and logical and arithmetic operations.

Device Manager

ACPI sub-component containing interfaces for managing ACPI compatible devices.

Event Manager

An event manager is an OSI sub-component containing functionality for managing the
ACPI event mechanisms.

IHV

Independent Hardware Vendor.

ISA

Industry Standard Architecture (Expansion bus on PC XT/AT machines).

LUN

Logical Unit Number (SCSI device address component).

UNIX Developer’s Interface Guide for Intel-Based Servers

UDIG WORKING GROUP G-2
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

MPS

Multi-Processor Specification.

OS

Operating system.

OSV

Operating system vendor.

PnP

Plug and Play.

POST

Power-On Self-Test. This code is executed at power-on prior to launching EFI.

ROM

Read Only Memory.

UDIG-compliant system

When a system adheres to all required guidelines, the system is referred to as a UDIG-
compliant system.

UNIX Developer’s Interface Guide for Intel-Based Servers

I-1 UDIG WORKING GROUP
Version 1.0

Copyright © 1999; Adaptec, Compaq, Hewlett-Packard, IBM, Intel, Interphase Corporation, LSI Logic, Mylex, Phoenix
Technologies, Qlogic, SCO, and Sun Microsystems (collectively referred to as the "Promoters"). All rights reserved. UNIX*
is a registered trademark of The Open Group.

Index
Boot and Configuration Guidelines, 2-1
Bus Bindings, 3-13
chapter summaries, 1-2
compliance to standards, 1-2
Device Drivers and Services, 3-1

Binary Specifications, 3-2
Source Specifications, 3-2

Driver Development Kits, 3-14
Driver Services, 3-12
EFI

Boot Time Services, 2-2
Overview, 2-2
Runtime Services, 2-2
System Partition, 2-2

EFI and UNIX*, 2-3
EFI Option ROMs, 2-5
EFI Portable Option ROMs, 2-5
evaluation of compliance, 1-2
guide

chapter summaries, 1-2
guideline compliance, 1-2
IA-32 ABI Binding, 3-4

Binary Bindings to the Source Specifications, 3-5
Building the Driver Object, 3-7
Driver packaging subdirectories, 3-4
Endianness, 3-4
Runtime Architecture, 3-5
Supported Processors, 3-4

IA-32 Option ROMs, 2-4

IA-64 ABI Binding, 3-8
Binary Bindings to the Source Specifications, 3-9
Building the Driver Object, 3-10
Driver packaging subdirectories, 3-8
Endianness, 3-8
Runtime Architecture, 3-9
Supported processor types, 3-8

Metalanguages, 3-12
Option ROMs, 2-4
optional feature, 1-3
recommended feature, 1-3
Reference Implementation, 3-13
required feature, 1-2
structure of guidelines, 1-2
summary of chapters, 1-2
Technology Profiles, 3-11
UDI Environment Implementer's Guid, 3-13
UDI Specifications [UDI1], 3-2
UNIX* ACPI Usage Model, 2-5

ACPI Subsystem, 2-8
Hardware/Firmware Requirements, 2-6
PCI Hot-plug, 2-8
UNIX* Operating System Requirements, 2-6

UNIX* and EFI, 2-3
Manipulating EFI non-volatile variables, 2-4
Providing tools to access and maintain system

partition, 2-3
Support EFI Boot Environment, 2-3
Tools for installing initial OS boot loader, 2-3

	Contents
	Introduction
	Audience for This Guide
	Scope of This Guide
	Purpose of This Guide
	Chapters of This Guide
	Guideline Compliance
	What Is Required Compliance?
	What Is Recommended Compliance?
	What Is Optional Compliance?

	Tools
	Guideline Summary

	Boot and Configuration Guidelines
	EFI Boot Model
	EFI Overview
	System Partition
	Boot Time Services
	Runtime Services

	UNIX and EFI
	Support EFI Boot Environment by Providing an EFI OS Loader
	Tools for Installing Initial OS Boot Loader
	Tools for creating an EFI partition
	Tools for setting non-volatile variables

	Provide Tools to Access and Maintain the System Partition at OS Runtime
	Provide tools to copy EFI applications, boot loaders, and drivers
	Provide tools to verify the integrity of the system partition and its contents
	Provide tools to create an EFI partition.

	Manipulating EFI Non-volatile Variables
	Manipulating EFI non-volatile variables with administrative tools
	Path to operating system boot partition

	Option ROMs
	IA-32 Option ROMs
	EFI Option ROMs
	EFI Portable Option ROMs

	UNIX ACPI Usage Model
	Hardware/Firmware Requirements
	Follow DIG-64 Hardware/Firmware Guidelines for ACPI

	UNIX Operating System Requirements
	Support for Memory Reporting Interfaces
	Support for ACPI Devices Defined in the ACPI Specification
	Provide an ACPI AML Interpreter
	Provide Configuration Support
	Provide Support for System Events via SCI and GPE
	Recognize Devices through the ACPI Namespace
	Devices that require ACPI enumeration

	Use Resources Presented in the Namespace
	Respond to Device Insertion and Removal
	Provide Device Power Management Support for D0 and D3

	PCI Hot-plug
	ACPI Subsystem
	Implement an ACPI Subsystem
	Implement ACPI subsystem External Interfaces
	Implement ACPI Subsystem Operating System Services

	Device Drivers and Services
	Source Specifications
	UDI Specifications [UDI1]

	Binary Specifications
	IA-32 ABI Binding
	Processor Architecture
	Supported processor types
	Endianness
	Driver packaging subdirectories

	Runtime Architecture
	Binary Bindings to the Source Specifications
	Sizes of UDI-Specific data types
	Implementation-Dependent macros
	UDI functions implemented as macros

	Building the Driver Object
	Object file format
	Static driver properties encapsulation

	IA-64 ABI Binding
	Processor Architecture
	Supported processor types
	Endianness
	Driver packaging subdirectories

	Runtime Architecture
	Binary Bindings to the Source Specifications
	Sizes of UDI-Specific data types
	Implementation-Dependent macros
	UDI functions implemented as macros

	Building the Driver Object
	Object file format
	Static driver properties encapsulation

	Technology Profiles
	Driver Services
	UDI Core Specification
	UDI Physical I/O Specification

	Metalanguages
	Bus Bindings

	UDI Environment Implementer’s Guide
	Reference Implementation
	Driver Development Kits

	Appendix A: ACPI Component Architecture: ACPI Subsystem
	Introduction
	Document Structure
	Rationale and Justification
	Reference Documents
	Overview of the ACPI Component Architecture (ACPI CA)
	Overview of the ACPI Subsystem
	ACPI OS-Independent Component
	ACPI OS-Dependent Component
	Relationships Between the Host Operating System, OSD, and OSI
	Host Operating System Interaction
	OS-Dependent Component Interaction
	OS-Independent Component Interaction

	Architecture of the OS-Independent Component (OSI)
	AML Interpreter
	ACPI Table Management
	Namespace Management
	Resource Management
	ACPI Hardware Management
	Event Handling

	Architecture of the OS Dependent Component (OSD)
	Functional Service Groups
	OS Bootload-time Services
	Device Driver Load-time Services
	OS Run-time Services
	Asynchronous Services

	Required Functionality
	Requests from the Operating System to the ACPI Subsystem
	Requests from Applications to the ACPI Subsystem
	Requests from the ACPI Subsystem to the Operating System

	Using the ACPI Subsystem
	Namespace Fundamentals
	Named Objects
	Scopes
	Example Scopes, Names, and Objects

	Predefined Objects
	Logical Namespace Layout

	Execution Model
	Initialization
	Memory Allocation
	Parameter Validation
	Exception Handling
	Multitasking and Reentrancy
	Event Handling
	Fixed Events
	General Purpose Events
	Notify Events

	Address Spaces and Operation Regions
	Installation of Address Space Handlers
	ACPI-Defined Address Spaces

	Environmental Support Requirements
	Required C Library Functions
	System Include Files
	Customization to the Target Environment

	ACPI Subsystem Interface Parameters
	ACPI Names and Pathnames
	Pointers
	Buffers

	ACPI Subsystem Data Types
	ACPI_STRING–ASCII String
	ACPI_BUFFER–Input and Output Memory Buffers
	Input Buffer
	Output Buffer

	ACPI_HANDLE–Object Handle
	Predefined Handles

	ACPI_OBJECT_TYPE–Object Type Codes
	ACPI_OBJECT–Method Parameters and Return Objects
	ACPI_OBJECT_LIST–List of Objects
	ACPI_EVENT_TYPE–Fixed Event Type Codes
	ACPI_TABLE_TYPE–ACPI Table Type Codes
	ACPI_TABLE_HEADER–Common ACPI Table Header
	ACPI_STATUS–Interface Exception Return Codes

	ACPI Resource Data Types
	PCI IRQ Routing Tables
	Device Resources
	RESOURCE_TYPE – Resource data types

	Exception Codes

	OS-Independent Component - External Interface Definition
	OS-Dependent Component - External Interface Definition
	
	OsdCreateSemaphore
	OsdDeleteSemaphore
	OsdWaitSemaphore
	OsdSignalSemaphore

	User Guide
	Using the ACPI OSI Interfaces
	Initialization Sequence
	Shutdown Sequence
	Traversing the ACPI Namespace (Low Level)
	Traversing the ACPI Namespace (High Level)

	Implementing the OS-Dependent Component
	Parameter Validation
	Memory Management
	Interrupt Handling
	Stream I/O
	Hardware Abstraction

	R
	References
	G
	Glossary
	I

	Index

